Что такое анионы пав. Поверхностно-активные вещества - история развития коллоидной химии

Рисунок 1: Поверхностно-активные вещества: схема действия

Натриевые и калиевые соли высших жирных кислот (мыла) являются поверхностно-активными веществами, способными образовывать стойкие мыльные пленки. Поверхностно-активные вещества (ПАВ) могут определенным образом располагаться на границе раздела двух фаз, например таких как вода- воздух или вода- масло . Такое поведение ПАВ объясняется особенностью их строения: молекула ПАВ, например мыла, включает как полярную, способную ионизироваться гидрофильную группировку, так и неполярную гидрофобную часть – углеводородный . На границе раздела фаз к воде ориентируется гидрофильная группа, а к масляной фазе или воздуху –углеводородный радикал.

Рисунок 2: Мицеллы мыла

В водной среде при определенной концентрации молекулы ПАВ существуют уже не в виде изолированных частиц, а как большие агрегаты – мицеллы, у которых все углеводородные находятся в центре мицеллы, а гидрофильные группы – снаружи (рис. 2а). Мицелла способна «захватывать» частички водонерастворимых веществ и создавать стойкие , так как слипанию мицелл препятствует одноименный заряд их поверхностей (рис. 2б).На этом принципе основано моющее действие мыл. Загрязнение представляют собой жировую пленку с частичками пыли. Мыла эмульгируют загрязнения, после чего эмульсия легко смывается водой.

Синтетические ПАВ и моющие средства

Для производства мыла необходимо большое количество жиров – ценного пищевого и технического продукта. Между тем поверхностной активностью обладают и другие органические соединения, имеющие сходное строение с мылами.

К ним относятся:

  • анионные ПАВ (например, натриевые соли алкилсульфатов , алкилсульфонатов );
  • катионные ПАВ (например четвертичные алкиламмониевые соли )

Рисунок 3: формулы синтетических поверхностно-активных веществ

Анионные и катионные поверхностно-активные вещества обязательно содержат в молекуле длинный алкильный радикал (С 12 – С 14)

Синтетические ПАВ получают в промышленности из доступного углеводородного сырья, главным образом, нефтяного, поэтому они недороги. Другое достоинство моющих средств на основе синтетических ПАВ заключается в возможности их использования в жесткой воде, в которой обычные мыла дают нерастворимые кальциевые и магниевые соли, что снижает эффективность моющего действия и повышает расход мыла.

Твины

Рисунок 4: Общая формула твинов

В последнее время широкое применение в промышленности (например в текстильной) находят поверхностно-активные вещества твины . В фармации они служат синтетической эмульгирующей основой при изготовлении мазей.

Твины построены по общему принципу, как и остальные ПАВ, то есть в их молекулах имеются неполярные и полярные части. Основу молекулы составляет циклический четырехатомный спирт сорбитан , в котором от одной до трех гидроксильных групп этерифицированы высшими жирными кислотами. Радикалы этих кислот составляют неполярную часть молекулы.

Оставшиеся гидроксильные группы образуют эфирную связь с остатками полиэтиленгликоля –(CH 2 CH 2 O) n CH 2 CH 2 OH , где n=40-80 . Фрагменты полиэтиленгликоля представляют полярную часть твинов.

Список литературы: Органическая химия, А.П.Лузин, С.Э.Зурабян, Н.А. Тюкавкина,1998 год

До изобретения мыла жир и грязь с кожи удаляли золой и мелким речным песком. Египтяне умывались смешанной с водой пастой на основе пчелиного воска. В Древнем Риме при мытье пользовались мелко истолченным мелом, пемзой, золой. Видимо, римлян не смущало, что при таких омовениях вместе с грязью можно было «соскоблить» и часть самой кожи. Заслуга в изобретении мыла принадлежит, вероятно, галльским племенам. По свидетельству Плиния Старшего, из сала и золы букового дерева галлы делали мазь, которую применяли для окрашивания волос и лечения кожных заболеваний. А во II веке ее стали использовать в качестве моющего средства.

Христианская религия считала мытье тела делом «греховодным». Многие «святые» были известны только тем, что всю свою жизнь не умывались. Но люди давно заметили вред и опасность для здоровья загрязнения кожи. Уже в 18 веке на Руси было налажено мыловарение, а в ряде европейских стран еще раньше.

Технология изготовления мыла из животных жиров складывалась на протяжении многих веков. Сначала составляется жировая смесь, которую расплавляют и омыляют – варят со щелочью. Для гидролиза жира в щелочной среде берется немного топленого свиного сала, около 10 мл этилового спирта и 10 мл раствора щелочи. Сюда же добавляют поваренную соль и нагревают полученную смесь. При этом образуются мыло и глицерин. Соль добавляют для осаждения глицерина и загрязнений. В мыльной массе образуется два слоя – ядро (чистое мыло) и подмыленный щелок.

Также получают мыло в промышленности.

Омыление жиров может протекать и в присутствии серной кислоты (кислотное омыление). При этом получаются глицерин и высшие карбоновые кислоты. Последние действием щелочи или соды переводят в мыла. Исходным сырьем для получения мыла служат растительные масла (подсолнечное, хлопковое и др.), животные жиры, а также гидроксид натрия или кальцинированная сода. Растительные масла предварительно подвергаются гидрогенизации, т. е. их превращают в твердые жиры. Применяются также заменители жиров — синтетические карбоновые жирные кислоты с большой молекулярной массой. Производство мыла требует больших количеств сырья, поэтому поставлена задача получения мыла из не пищевых продуктов. Необходимые для производства мыла карбоновые кислоты получают окислением парафина. Нейтрализацией кислот, содержащих от 9 до 15 углеродных атомов в молекуле, получают туалетное мыло, а из кислот, содержащих от 16 до 20 атома углерода, — хозяйственное мыло и мыло для технических целей.

Состав мыла

Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.

Мыло – натриевые или калиевые соли высших карбоновых кислот,
полученные в результате гидролиза жиров в щелочной среде

Строение мыла можно описать общей формулой:

R – COOМ

где R – углеводородный радикал, M – металл.

Преимущества мыла:

а) простота и удобство в использовании;

Б) хорошо удаляет кожное сало

В) обладает антисептическими свойствами

Недостатки мыла и их устранение:

недостатки

способы устранения

1. Плохая моющая способность в жесткой воде, содержащей растворимые соли кальция и магния. Так как при этом выпадают в осадок нерастворимые в воде соли высших карбоновых кислот кальция и магния. Т.е. при этом требуется большой расход мыла.

1. В состав мыла вводят вещества-комплексообразователи, способствующие смягчению воды (натриевые соли этилендиамин-тетрауксусной кислоты - ЭДТК, ЭДТА, ДТПА).

2. В водных растворах мыло частично гидролизуется, т.е. взаимодействует с водой.

При этом образуется определенное количество щелочи, которая способствует расщеплению кожного сала и его удалению.

Калиевые соли высших карбоновых кислот (т.е. жидкое мыло) лучше растворяются в воде и поэтому обладают более сильным моющим действием.

Но при этом оказывает вредное воздействие на кожу рук и тела. Это связано с тем, что верхний тончайший слой кожи имеет слабокислую реакцию (рН =5,5) и за счет этого препятствует проникновению болезнетворных бактерий в более глубокие слои кожи. Умывание мылом приводит к нарушению рН, (реакция становится слабощелочная), раскрываются поры кожи, что приводит к понижению естественной защитной реакции. При слишком частом использовании мыла кожа сохнет, иногда воспаляется.

2. Для уменьшения данного негативного воздействия в современные сорта мыла добавляют:

- слабые кислоты (лимонная кислота, борная кислота, бензойная кислота и др.), которые нормализуют рН

- крема, глицерин, вазелиновое масло, пальмовое масло, кокосовое масло, диэтаноламиды кокосового и пальмового масел и т.д. для смягчения кожи и предотвращения попадания бактерий в поры кожи.

Строение мыла - стеарата натрия.

Молекула стеарата натрия имеет длинный неполярный углеводородный радикал (обозначен волнистой линией) и небольшую полярную часть:

Молекулы ПАВ на пограничной поверхности располагаются так, что гидрофильные группы карбоксильных анионов направлены в воду, а углеводородные гидрофобные выталкиваются из нее. В результате поверхность воды покрывается частоколом из молекул ПАВ. Такая водная поверхность имеет меньшее поверхностное натяжение, что способствует быстрому и полному смачиванию загрязненных поверхностей. Уменьшая поверхность натяжения воды, мы увеличиваем ее смачивающую способность.


Когда-нибудь задумывались как действует и из чего состоит средство для мытья посуды и стиральный порошок?

Проблема в том, что грязь, особенно жир, очень сложно смыть водой. Попробуйте помыть жирные руки водой. Вода будет стекать не смывая жир. Молекулы воды не липнут к молекулам жира и не забирают их с собой. Стало быть, задача в том, чтобы прикрепить молекулы жира к молекулам воды. Именно это и делают ПАВы. Молекула ПАВ представляет собой сферу, один полюс которой — липофильный (соединяется с жирами), а другой — гидрофильный (вступает в связь с молекулами воды). То есть одним концом частица ПАВ прикрепляется к частице жира, а другим концом — к частицам воды.

ПАВ (Поверхностно Активные Вещества) — это, как правило, химические вещества, которые содержатся в любом чистящем средстве, даже в обычном мыле. Как раз благодаря ПАВам чистящее средство чистит.

Однако большая часть влаги человеческого тела имеет также жировую основу. Т.е. например защитный слой кожи (липиды — жиры, которые защищают кожу от попадания в организм различных бактерий) является жировой пленкой и естественно разрушается ПАВами. А зараза нападает на то место, которое наименее защищено, что конечно же вредно для здоровья человека. ПАВы также разрушают клетки организма (активность разрушения зависит от типа ПАВ).

Специалисты утверждают, что после применения моющего средства, защитный слой кожи должен успеть восстановиться в течение 4 часов до, как минимум 60%. Это установленные ГОСТом нормы гигиены. Однако далеко не все моющие средства обеспечивают такую восстановимость кожи. Обезжиренная и обезвоженная кожа быстрей стареет. Кроме того, ПАВы могут накапливаться в мозге, печени, сердце, жировых отложениях (особенно много) и продолжать разрушение организма длительное время. А поскольку без моющих средств практически никто не обходится, то ПАВы постоянно пополняются в нашем организме обеспечивая непрерывный вред телу. ПАВы также влияют на репродуктивную функцию у мужчин, аналогично радиоактивному излучению.

Проблема усугубляется тем, что наши очистные сооружения плохо справляются с удалением ПАВов. Поэтому вредные ПАВы возвращаются через водопровод к нам почти в той же концентрации, в которой мы их выливаем в сток. Исключение составляют только средства с биоразлагаемыми ПАВами .


Анионные ПАВ — Основным достоинством является относительно невысокая стоимость, эффективность и хорошая растворимость. Но они наиболее агрессивны по отношению к организму человека.

Катионные ПАВ обладают бактерицидным свойством.

Неионогенные ПАВ — Основным достоинством является благоприятное действие на ткань и главное — 100% биоразлагаемость.

Амфолитные ПАВ — в зависимости от среды (кислотность/щелочность) проявляют себя либо как катионные, либо как анионные ПАВы.

Хорошей биоразлагаемостью (на 80-98%) обладают некоторые из анионоактивных (анионных) ПАВ , например, алкилсульфонаты. Но наиболее полной (100%) биоразлагаемостью обладают неионогенные ПАВ.

Включение в рецептуру моющих средств неионогенных ПАВ приводит к более низкому содержанию анионактивных веществ на коже. Аналогичный эффект, а именно снижение накопления анионных ПАВ на коже и тканях, был установлен при введении в композиции моющих средств ферментов биологического происхождения.

Одним из основных критериев экологической безопасности товаров бытовой химии является биоразлагаемость ПАВ , которые входят в их состав. Различают первичную биоразлагаемость, которая подразумевает структурные изменения (трансформацию) ПАВ микроорганизмами, приводящие к потере поверхностно-активных свойств. Под полной биоразлагаемостью имеют ввиду конечную биодеградацию ПАВ до диоксида углерода и воды. Но на биоразлагаемость ни один товар бытовой химии в наших СанЭпидемСтанциях не проверяют.

Считается, что в стиральном порошке достаточно не более 5% ПАВ , чтобы он хорошо стирал. Так что читайте состав порошков, чем меньше ПАВ, тем меньше вреда для здоровья .

По сути, натуральным моющим средством можно признать только мыльный корень и сапонины (мыльные вещества) из растений.

Поверхностно-активные вещества имеют полярное (асимметричное) строение молекул, способны адсорбироваться на границе двух сред и понижать свободную поверхностную энергию системы. Совершенно незначительные добавки ПАВ могут изменить свойства поверхности частиц и придать материалу новые качества. В основе действия ПАВ лежит явление адсорбции, которое приводит одновременно к одному или двум противоположным эффектам: уменьшению взаимодействия между частицами и стабилизации поверхности раздела между ними вследствие образования межфазного слоя. Для большинства ПАВ характерно линейное строение молекул, длина которых значительно превышает поперечные размеры (рис. 15). Радикалы молекул состоят из групп, родственных по своим свойствам молекулам растворителя, и из функциональных групп со свойствами, резко отличными от них. Это полярные гидрофильные группы, обладающие резко выраженными валентными связями и оказывающие определенное влияние на смачивающее, смазывающее и другие действия, связанные с понятием поверхностной активности. При этом уменьшается запас свободной энергии с выделением тепла в результате адсорбции. Гидрофильными группами на концах углеводородных неполярных цепей могут быть гидроксил – ОН, карбоксил – СООН, амино – NН 2 , сульфо – SO и другие сильно взаимодействующие группы. Функциональные группы представляют собой гидрофобные углеводородные радикалы, характеризующиеся побочными валентными связями. Гидрофобные взаимодействия существуют независимо от межмолекулярных сил, являясь дополнительным фактором, способствующим сближению, «слипанию» неполярных групп или молекул. Адсорбционный мономолекулярный слой молекул ПАВ свободными концами углеводородных цепей ориентируется от

поверхности частиц и делает ее несмачиваемой, гидрофобной.

Эффективность действия той или иной добавки ПАВ зависит от физико-химических свойств материала. ПАВ, дающее эффект в одной химической системе, может не оказать никакого действия или явно противоположное – в другой. При этом очень важна концентрация ПАВ, определяющая степень насыщенности адсорбционного слоя. Иногда действие, аналогичное ПАВ, проявляют высокомолекулярные соединения, хотя они и не изменяют поверхностного натяжения воды, например поливиниловый спирт, производные целлюлозы, крахмал и даже биополимеры (белковые соединения). Действие ПАВ могут оказывать электролиты и вещества, нерастворимые в воде. Поэтому определить понятие «ПАВ» очень трудно. В широком смысле это понятие относится к любому веществу, которое в небольших количествах заметно изменяет поверхностные свойства дисперсной системы.

Классификация ПАВ очень разнообразна и в отдельных случаях противоречива. Предпринято несколько попыток классификации по разным признакам. По Ребиндеру все ПАВ по механизму действия разделяются на четыре группы:

– смачиватели, пеногасители и пенообразователи, т. е. активные на границе раздела жидкость – газ. Они могут снизить поверхностное натяжение воды с 0,07 до 0,03–0,05 Дж/м 2 ;

– диспергаторы, пептизаторы;

– стабилизаторы, адсорбционные пластификаторы и разжижители (понизители вязкости);

– моющие вещества, обладающие всеми свойствами ПАВ.

За рубежом широко используется классификация ПАВ по функциональному назначению: разжижители, смачиватели, диспергаторы, дефлокулянты, пенообразователи и пеногасители, эмульгаторы, стабилизаторы дисперсных систем. Выделяются также связующие, пластифицирующие и смазывающие вещества.

По химическому строению ПАВ классифицируют в зависимости от природы гидрофильных групп и гидрофобных радикалов. Радикалы разделяют на две группы – ионогенные и неионогенные, первые могут быть анионо- и катионоактивные.

Неионогенные ПАВ содержат неионизирующиеся конечные группы с высоким сродством к дисперсионной среде (воде), в состав которых входят обычно атомы кислорода, азота, серы. Анионоактивные ПАВ – соединения, в которых длинная углеводородная цепочка молекул с низким сродством к дисперсионной среде входит в состав аниона, образующегося в водном растворе. Например, СООН – карбоксильная группа, SO 3 Н – сульфогруппа, OSO 3 Н – группа эфира, Н 2 SО 4 и др. К анионоактивным ПАВ относятся соли карбоновых кислот, алкил сульфаты, алкилсульфонаты и т. п. Катионоактивные вещества образуют в водных растворах катионы, содержащие длинный углеводородный радикал. Например, 1-, 2-, 3- и 4- замещенный аммоний и др. Примерами таких веществ могут быть соли аминов, аммониевые основания и т. п. Иногда выделяют третью группу ПАВ, куда входят амфотерные электролиты и амфолитные вещества, которые в зависимости от природы дисперсной фазы могут проявлять как кислые, так и основные свойства. Амфолиты нерастворимы в воде, но активны в неводных средах, например олеиновая кислота в углеводородах.

Японские исследователи предлагают классификацию ПАВ по физико-химическим свойствам: молекулярный вес, молекулярная структура, химическая активность и т. п. Возникающие за счет ПАВ гелеобразные оболочки на твердых частицах в результате различной ориентации полярных и неполярных групп могут вызывать разнообразные эффекты: разжижение; стабилизацию; диспергирование; пеногашение; связывающие, пластифицирующие и смазывающие действия.

Положительное действие ПАВ оказывает только при определенной концентрации. По вопросу оптимального количества вводимых ПАВ имеются очень разнообразные мнения. П. А. Ребиндер указывает, что для частиц

1–10 мкм необходимое количество ПАВ должно составлять 0,1–0,5%. В других источниках приводятся значения 0,05–1% и более для разной дисперсности. Для ферритов было найдено, что для образования мономолекулярного слоя при сухом помоле ПАВ необходимо брать из расчета 0,25 мг на 1 м 2 удельной поверхности начального продукта; для мокрого помола – 0,15–0,20 мг/м 2 . Практика показывает, что концентрация ПАВ в каждом конкретном случае должна подбираться экспериментально.

В технологии керамических РЭМ можно выделить четыре направления применения ПАВ, которые позволяют интенсифицировать физико-химические изменения и превращения в материалах и управлять ими в процессе синтеза:

– интенсификация процессов тонкого измельчения порошков для повышения дисперсности материала и сокращения времени помола при достижении заданной дисперсности;

– регулирование свойств физико-химических дисперсных систем (суспензий, шликеров, паст) в технологических процессах. Здесь важны процессы разжижения (или понижения вязкости с увеличением текучести без понижения влагосодержания), стабилизации реологических характеристик, пеногашения в дисперсных системах и т. п.;

– управление процессами факелообразования при распылении суспензий при получении заданных размеров, формы и дисперсности факела распыла;

– повышение пластичности формовочных масс, особенно получаемых при воздействии повышенных температур, и плотности изготовленных заготовок в результате введения комплекса связующих, пластифицирующих и смазывающих веществ.

Природные и синтетические ПАВы - что лучше? Ниже сравнение ПАВ по свойствам и эффекту на кожу.

Поверхностно –активные вещества – это эмульгаторы с особыми свойствами, позволяющими соединять воду и жиры так, что получаются пузырьки воздуха- пена. Все поверхносто-активные вещества можно разделить на две группы:

Полученные из растительного сырья (орехов, семян, косточек, животных жиров)

Полученные из сырой нефти

Сразу оговорюсь – здесь информация только о жидких ПАВ, не о мыле

Итак, сравним:

Сходства Различия

Строение

Способ получения

Особенности формулирования

Интенсивность воздействия

Есть еще одно общее качество у всех ПАВ - это заряд молекулы. Все поверхностно –активные вещества, вне зависимости от происхождения могут быть:

Катионными – молекула ПАВ заряжена положительно

Анионными – молекула ПАВ заряжена отрицательно

Амфотерными – меняющими заряд на плюс или минус, в зависимости от раствора

Нейтральным и – не имеющими заряда.

Катионные ПАВ –очень токсичны для кожи – их применяют в бытовой химии. Анионные ПАВ – более мягкого действия. Лаурет сульфат натрия, лаурил сульфат натрия - анионные Пав.

Амфотерные и неионогенные Пав – наиболее мягкого действия, слабо взаимодействуют с липидами клеток, меньше всего нарушают липидную мантию кожи. Именно эти две группы ПАВов считаются наиболее безопасными.

Еще небольшое интересное пояснение – механизм действия шампуня без слез . Поверхностно- активные вещества в названии которых есть слово «лаурет» по результатам исследований меньше раздражают глаза. Лауреты получаются в результате реакции этоксилирования – чем более разветвленной становится молекула ПАВ – тем менее чувствительна к ней кожа и глаза.

Вот теперь самое интересное: побочным продуктом реакции этоксилирования является 1,4 диоксан – сильнейший канцероген, способный быстро проникать через неповрежденную кожу, помимо этого он вступает в реакцию с другими компонентами шампуня или геля с образованием еще более опасных для организма нитратов. Помните скандал, случившийся несколько лет назад – в шампуне и пенке для детей «без слез Джонсон и Джонсон» нашли канцерогены? Именно диоксан и его соединения были найдены в этих средствах. Шампунь все равно продолжает продаваться в магазинах. Комментарии тут излишни, правда?

Теперь о том, как и из каких Пав мы формулируем наши средства для волос и тела...... продолжение статьи выложим в ближайшее время

Уважаемые читатели! Весь контент нашего сайта - регистрируется перед публикацией в поисковых системах, защищен законом об авторских правах. Во избежание санкций поисковых систем- при перепечатке текста - активная ссылка на наш сайт обязательна!

с наилучшими пожеланиями, Натакосметик

2024 litera-globus.ru. literaglobus - Образовательный портал.