История возникновения логарифма. Что такое логарифм? Условия определения логарифма

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

ФГОУ СПО ХАКАССКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

Внеаудиторная самостоятельная работа по теме:

История возникновения логарифма. Логарифмирование и потенцирование

Выполнил студент группы ТВТ-11

Романов Иван.

Проверил преподаватель:

Волкова Татьяна Валерьевна

1 Вещественный логарифм

      1.1 Свойства

      1.2 Натуральные логарифмы

      1.3 Десятичные логарифмы

      1.4 Логарифмическая функция

      • 1.4.1 Исследование логарифмической функции

2 Комплексный логарифм

      2.1 Многозначная функция

      2.2 Аналитическое продолжение

      2.3 Риманова поверхность

3 Исторический очерк

      3.1 Вещественный логарифм

      3.2 Комплексный логарифм

4 Логарифмические таблицы

Логарифмы

Логарифм. Основное логарифмическое тождество.

Свойства логарифмов. Десятичный логарифм. Натуральный логарифм.

Логарифмом положительного числа N по основанию (b > 0, b 1)называется показатель степени x , в которую нужно возвести b, чтобы получить N .

Обозначение логарифма:

Эта запись равнозначна следующей: b x = N .

П р и м е р ы: log 81 = 4 , так как 3 4 = 81 ;

log 27 = 3 , так как (1/3)  3 = 3 3 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

1) log b = 1 , так как b 1 = b .

2) log 1 = 0 , так как b 0 = 1 .

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя:

log ( a / b ) = log a – log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода (т.e. перехода от одного основания логарифма к другому основанию):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, ... pавны соответственно 1, 2, 3, …, т.е. имеют столько положительных

единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, ... pавны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического применения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. так называемый второй замечательный предел в разделе "Пределы"). Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

Логарифм

Графики логарифмических функций

Логарифм числа b по основанию a (от греч. λόγος - «слово», «отношение» и ἀριθμός - «число» ) определяется как показатель степени , в которую надо возвести число a , чтобы получить число b . Обозначение: . Из определения следует, что записи и равносильны.

Пример: , потому что .

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0, непрерывна и дифференцируема там (см. рис. 1).

Свойства

Доказательство [показать]

Докажем, что .

(так как по условию bc > 0).

Доказательство [показать]

Докажем, что

(так как по условию

Доказательство [показать]

Докажем, что .

(так как b p > 0 по условию).

Доказательство [показать]

Докажем, что

Доказательство [показать]

Используем для доказательства тождество . Логарифмируем обе части тождества по основанию c. Получаем:

Доказательство [показать]

Логарифмируем левую и правую части по основанию c :

Левая часть:

Правая часть:

Равенство выражений очевидно. Т. к. логарифмы равны, то в силу монотонности логарифмической функции равны и сами выражения.

Натуральные логарифмы

Для производной натурального логарифма справедлива простая формула:

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

При справедливо равенство

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

    Физика - интенсивность звука (децибелы ).

    Астрономия - шкала яркости звёзд .

    Химия - активность водородных ионов (pH ).

    Сейсмология - шкала Рихтера .

    Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

    История - логарифмическая шкала времени .

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Логарифмическая функция

Логарифмической функцией называется функция вида f (x ) = log a x , определённая при

Исследование логарифмической функции

Область определения:

Область значения:

График любой логарифмической функции проходит через точку (1;0)

Производная логарифмической функции равна:

Доказательство [показать]

I. Докажем, что

Запишем тождество e ln x = x и продифференцируем его левую и правую части

Получаем, что , откуда следует, что

II. Докажем, что

Функция являются строго возрастающей при a > 1 и строго убывающей при 0 a

Прямая x = 0 является левой вертикальной асимптотой , поскольку при a > 1 и при 0 a

Комплексный логарифм

Многозначная функция

Для комплексных чисел логарифм определяется так же, как вещественный. Начнём с натурального логарифма, который обозначим и определим как множество всех комплексных чисел z таких, что e z = w . Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

то логарифм находится по формуле:

Здесь - вещественный логарифм, r = | w | , k - произвольное целое число . Значение, получаемое при k = 0, называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента в интервале (− π,π]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

    Вещественная часть логарифма определяется по формуле:

    Логарифм отрицательного числа находится по формуле:

Примеры (приведено главное значение логарифма):

Аналогично рассматриваются комплексные логарифмы с другим основанием. Следует, однако, быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

i π = ln(− 1) = ln((− i ) 2) = 2ln(− i ) = 2(− i π / 2) = − i π - явная нелепость.

Отметим, что слева стоит главное значение логарифма, а справа - значение из нижележащей ветви (k = − 1). Причина ошибки - неосторожное использования свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов ». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов , косинусов и тангенсов , с шагом 1". Термин логарифм , предложенный Непером, утвердился в науке.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически , сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M , где M - масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль - этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию , то их логарифмы образуют прогрессию арифметическую . Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) - LogNap(1) .

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера .

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке . В книге «Введение в анализ бесконечных» (1748 ) Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614 ), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620 ). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783 ) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

    Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса (1921 ) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

Литература

    Успенский Я. В. Очерк истории логарифмов. Петроград, 1923. −78 с.

    Выгодский М. Я. Справочник по элементарной математике . - М.: АСТ, 2003. - ISBN 5-17-009554-6

    История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.

    Том 1 С древнейших времен до начала Нового времени. (1970)

    Том 2 Математика XVII столетия. (1970)

    Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров) . - М.: Наука, 1973.

    Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, тома I, II. - М.: Наука, 1960.

12логарифму интенсивности действующего раздражителя (... XX в. впервые в истории психологии попытались экспериментально исследовать... выявление причин и специфических условий возникновения неврозов, выделение в особый...

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Слово логарифм происходит от греческого(число и отношение) и переводится, следовательно, как отношение чисел.Выбор изобретателем(1594г) логарифмов Дж.Непером такого названия объясняется тем,что логарифмы возникли при сопоставлении двух чисел,одно из которых является членом арифмитической прогрессии,а другое-геометрической.Логарифмы с основанием е Спейдел(1619 г.),составивший первые таблицы для функции ln x. Название более позднего происхождения натуральный (естественный) объясняется "естественностью" этого логарифма. Н.Меркатор(1620-1687),предложивший это название,обнаружил ln x - это площадь под гиперболой y=1/х . Он предлагал также название гиперболический.

Н.Меркатор

.

В течение 16 века резко возрос объем работы,связанный с проведением приближенных вычислений в ходе решения задач,и в первую очередь задач астрономии,имеющий непосредственное практическое применение(в частности, при определении положения сосудов по звездам и по Солнцу). Наибольшие проблемы возникали при выполнении операций умножения и деления. Попытки частично упрощения этих операций путем сведения их к сложению большого успеха не приносили. Поэтому открытие логарифмов, сводящее умножение, деление чисел к сложению,вычитанию их логарифмов,удлинило, по выражению Лапласа, жизнь вычислителей.

Логарифмы необычайно быстро вошли в практику. Изобретатели логарифмов не ограничились разработкой новой теории.Было создано практическое средство-таблица логарифмов, - резко повысившее производительность труда вычислителей. Добавим, что уже всего через 9 лет после издания первых таблиц, английским математиком Д. Гантером была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений.(Вплоть до самого последнего времен, когда на наших глазах повсеместное распространение получает электронная вычислительная техника и роль логарифмов, как средство вычисления резко снижается.) Первые таблицы логарифмов составлены независимо друг от друга шотландским математиком Непером (1550-1617) и швейцарцем И. Бюрги.

Джон Непер


И.Бюрги



В таблицы Непера, изданные под названиями "Описание удивительной таблицы логарифмов"(1614 г.) и "Устройство удивительной таблицы логарифмов"(1619) вошли значения логарифмов синусов, косинусов и тангенсов для углов от 0 до 90 градусов с шагом в одну минуту. Бюрги подготовил свои таблицы логарифмов чисел, по-видимому, к 1610 г. но вышли в свет они в 1620 году, уже после издания таблиц Непера, и поэтому остались незамеченными.

Одна из важных идей,лежащих в основе изобретения логарифмов,была уже известна. Штифель и ряд других математиков обратили внимание на то,что умножение и деление геометрической прогрессии

Соответствуют сложению и вычитанию показателей,образующих арифметическую прогрессию...,-3,-2,-1,0,1,2,3,....

Но одной этой идеи недостаточно.Например,"сеть" целых степеней числа 2 слишком редка; многие числа "остаются без логарифмов",поэтому была еще одна идея: возводить в степень числа очень близкие к единице.Заметив,что степени

при больших значениях n близки, Непер и Бюрги приняли аналогичное решение: Непер брал в качестве основания число

А Бюрги-число

Дальнейший ход их рассуждения и описания схем вычисления перессказать довольно трудно,как потому,что имеется много непростых деталей,так и потому,что тексты 16 века довольно туманны.Заметим только,что фактически Непер переходит к основанию

А Бюрги- к основанию

Это не изменило существа дела,но позволило несколько упростить вычисления и сами таблицы.

Таким образом, по существу оба изобретателя логарифма пришли к выводу о целесообразности рассмотрения степеней вида

где М очень большое число.Рассмотрение чисел такого вида приводит к известному вам числу e , которое определялось как

Осталось уже немного до идеи принятия в качестве основания логарифмов числа е (основания таблицы логарифмов Бюрги совпадает с точностью третьего знака с е, основания таблицы логарифмов Непера близко к числу 1/е).
Первые таблицы десятичных логарифмов (1617 г) были составлены по совету Непера английским математиком Г.Бриггсом.

Многие из них были найдены с помощью выведенной Бриггсом приближенной формулы достаточно точной при больших значениях m и n в виде степеней двойки:это давало ему возможность свести вычисления к последовательному извлечению квадратных корней.

Другая идея Бриггса позволяет находить значения десятичных логарифмов некоторых чисел самостоятельно,без помощи таблиц.Целая часть логарифма целого числа на единицу меньше количество цифр в самом числе.Поэтому,например, для нахождения lg2 с точностью до трех знаков достаточно найти число цифр.Это не очень трудно.
При составлении таблиц логарифмов важную роль сыграло найденное Непером и Бюрги соотношение между приращениями x и y в произвольной точке x для функции y=logx.Отвлекаясь от деталей их системы изложения,основной результат можно выразить так:

, где k-некоторое постоянная.Если основание логарифмов -степень где n- достаточно большое число,то

Устремляя к нулю,приходим к дифференциальному уравнению y"=1/x,решением которого,как вы знаете,является функция lnx+C.Существует система изложения при которой

с самого начала определяется как ,т.е. -площадь криволинейной трапеции, ограниченной гиперболой,осью абсцисс и прямыми x =1 и
2024 litera-globus.ru. literaglobus - Образовательный портал.