Основные химические свойства железа. Железо: его строение и свойства

Железо - средний по химической активности металл. Входит в состав многих минералов: магнетита, гематита, лимонита, сидерита, пирита.

Образец лимонита

Химические и физические свойства железа

При нормальных условиях и в чистом виде железо - твердое вещество серебристо-серого цвета с ярким металлическим блеском. Железо - хороший электро- и теплопроводник. Это можно ощутить, дотронувшись в холодном помещении к железному предмету. Так как металл быстро проводит тепло, за короткий отрезок времени забирает большую часть тепла из человеческой кожи, поэтому во время прикосновения к нему ощущается холод.


Чистое железо

Температура плавления железа - 1538 °С, температура кипения - 2862 °С. Характерные свойства железа - хорошая пластичность и легкоплавкость.

Реагирует с простыми веществами: кислородом, галогенами (бромом, йодом, фтором, ), фосфором, серой. При сжигании железа образуются оксиды металла. В зависимости от условий проведения реакции и пропорций между двумя участниками, оксиды железа могут быть разнообразными. Уравнения реакций:

2Fe + O₂ = 2FeO;

4Fe + 3O₂ = 2Fe₂O₃;

3Fe + 2O₂ = Fe₃O₄.

Подобные реакции идут при высоких температурах. вы узнаете, какие опыты на изучение свойств железа можно провести дома.

Реакция железа с кислородом

Для реакции железа с кислородом необходимо предварительное нагревание. Железо сгорает ослепительным пламенем, разбрасывая - раскаленные частицы железной окалины Fe₃O₄. Такая же реакция железа и кислорода происходит и на воздухе, когда при механической обработке сильно нагревается от трения.


При сгорании железа в кислороде (или на воздухе) образуется железная окалина. Уравнение реакции:

3Fe + 2O₂ = Fe₃O₄

3Fe + 2O₂ = FeO Fe₂O₃.

Железная окалина - соединение, в котором железо имеет разные значения валентности.

Получение оксидов железа

Оксиды железа - это продукты взаимодействия железа с кислородом. Наиболее известные из них - FeO, Fe₂O₃ и Fe₃O₄.

Оксид железа (III) Fe₂O₃ - оранжево-красный порошок, образующийся при окислении железа на воздухе.


Вещество образуется при разложении соли трехвалентного железа на воздухе при высокой температуре. В фарфоровый тигель насыпается немного сульфата железа (III), а затем прокаливается на огне газовой горелки. При термическом разложении сульфат железа распадется на оксид серы и оксид железа.

Оксид железа (II, III) Fe₃O₄ образуется при сжигании порошкообразного железа в кислороде или на воздухе. Для получения оксида в фарфоровый тигель насыпается немного смешанного с нитратом натрия или калия тонкого железного порошка. Смесь поджигается газовой горелкой. При нагревании нитраты калия и натрия разлагаются с выделением кислорода. Железо в кислороде горит, образуя оксид Fe₃O₄. После окончания горения полученный оксид остается на дне фарфоровой чашки в виде железной окалины.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Оксид железа (II) FeO - это черный порошок, который образуется при разложении оксалата железа в инертной атмосфере.

  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).

Железо – основной конструкционный материал. Металл используется буквально везде – от ракет и подводных лодок до столовых приборов и кованых украшений на решетке. В немалой степени этому способствует элемент в природе. Однако истинной причиной является, все же, его прочность и долговечность.

В данной статье нами будет дана характеристика железа как металла, указаны его полезные физические и химические свойства. Отдельно мы рассказываем, почему железо называют черным металлом, чем оно отличается от других металлов.

Как не странно, но до сих пор иногда возникает вопрос о том, железо — это металл или неметалл. Железо – элемент 8 группы, 4 периода таблицы Д. И. Менделеева. Молекулярная масса 55,8, что довольно много.

Это металл серебристо-серого цвета, довольно мягкий, пластичный, обладающий магнитными свойствами. На деле чистое железо встречается и используется крайне редко, поскольку металл химически активен и вступает в разнообразные реакции.

О том, что такое железо, расскажет это видео:

Понятие и особенности

Железом обычно называют сплав с небольшой долей примесей – до 0,8%, который сохраняет практически все свойства металла. Повсеместное применение находит даже не этот вариант, а сталь и чугун. Свое наименование – черный металл, железо, а, вернее говоря, все тот же чугун и сталь, получили благодаря цвету руды – черному.

Сегодня черными металлами называют сплавы железа: сталь, чугун, феррит, а также марганец, и, иногда, хром.

Железо – очень распространенный элемент. По содержанию в земной коре он занимает 4 место, уступая кислороду, и . В ядре Земли находится 86% железа, и всего 14% – в мантии. В морской воде вещества содержится очень мало – до 0,02 мг/л, в речной воде несколько больше – до 2 мг/л.

Железо – типичный металл, к тому же довольно активный. Он взаимодействует с разбавленными и концентрированными кислотами, но под действием очень сильных окислителей может образовать соли железной кислоты. На воздухе железо быстро покрывается оксидной пленкой, предупреждающей дальнейшую реакцию.

Однако в присутствии влаги вместо оксидной пленки появляется ржавчина, которая благодаря рыхлой структуре дальнейшему окислению не препятствует. Эта особенность – корродирование в присутствии влаги, является главным недостатком железных сплавов. Стоит отметить, что провоцируют коррозии примеси, в то время как химически чистый металл устойчив к воде.

Важные параметры

Чистый металл железо довольно пластичен, хорошо поддается ковке и плохо литью. Однако небольшие примеси углерода значительно увеличивают его твердость и хрупкость. Это качество и стало одной из причин вытеснения бронзовых орудий труда железными.

  • Если сравнить железные сплавы и , из тех, что были известны в древнем мире, очевидно, что , и по коррозийной стойкости, а, значит, и по долговечности. Однако массовое привело к истощению оловянных рудников. А, так как значительно меньше, чем , перед металлургами прошлого оставался вопрос о замене. И железо заменило бронзу. Полностью последняя была вытеснена, когда появились стали: такого сочетания твердости и упругости, бронза не дает.
  • Железо образует с кобальтом и триаду железа. Свойства элементов очень близки, ближе, чем у их же аналогов с таким же строение внешнего слоя. Все металлы обладают прекрасными механическими свойствами: легко обрабатываются, прокатываются, протягиваются, их можно ковать и штамповать. Кобальт и не столь реакционноспособны и более устойчивы к коррозии, чем железо. Однако меньшая распространенность этих элементов не позволяет использовать их так же широко, как и железо.
  • Главным «конкурентом» железу по области использования выступает . Но на деле оба материала обладают совершенно разными качествами. далеко не столь прочен, как железо, хуже вытягивается, не поддается ковке. С другой стороны, металл отличается, куда меньшим весом, что заметно облегчает конструкции.

Электропроводность железа весьма средняя, в то время как алюминий по этому показателю уступает лишь серебру, и золоту. Железо является ферромагнетиком, то есть, сохраняет намагниченность при отсутствии магнитного поля, а и втягивается в магнитное поле.

Столь разные свойства обуславливают абсолютно разные области применения, так что «сражаются» конструкционные материалы очень редко, например, в производстве мебели, где легкость алюминиевого профиля противопоставляется прочности стального.

Преимущества и недостатки железа рассмотрены далее.

Плюсы и минусы

Главное преимущество железа по сравнению с другими конструкционными металлами – распространенность и относительная простота выплавки. Но, учитывая в каком количестве используется железо, это весьма немаловажный фактор.

Преимущества

К плюсам металла относят и другие качества.

  • Прочность и твердость при сохранении упругости – речь идет не о химически чистом железе, а о сплавах. Причем качества эти варьируются в довольно широких пределах в зависимости от марки стали, способа термообработки, метода получения и так далее.
  • Разнообразие сталей и ферритов позволяет создать и подобрать материал буквально для любой задачи – от каркаса моста до режущего инструмента. Возможность получения заданных свойств при добавлении очень незначительных примесей – необычайно большое достоинство.
  • Легкость механической обработки позволяет получить продукцию самого разного вида: прутки, трубы, фасонные изделия, балки, листовое железо и так далее.
  • Магнитные свойства железа таковы, что металл является основным материалом при получении магнитоприводов.
  • Стоимость сплавов зависит, конечно, от состава, но все равно значительно ниже, чем у большинства цветных, пусть и с более высокими прочностными характеристиками.
  • Ковкость железа обеспечивает материалу очень высокие декоративные возможности.

Недостатки

Минусы железных сплавов значительны.

  • В первую очередь это недостаточная коррозийная стойкость. Специальные виды сталей – нержавеющие, обладают этим полезным качеством, но и стоят намного дороже. Значительно чаще металл защищают с помощью покрытия – металлического или полимерного.
  • Железо способно накапливать электричество, поэтому изделия из его сплавов подвергаются электрохимической коррозии. Корпуса приборов и машин, трубопроводы должны каким-то образом защищаться – катодная защита, протекторная и так далее.
  • Металл тяжелый, поэтому железные конструкции заметно утяжеляют объект строительства – здание, железнодорожный вагон, морское судно.

Состав и структура

Железо существует в 4 различных модификациях, отличающихся друг от друга параметрами решетки и структурой. Наличие фаз имеет действительно решающее значение для выплавки, поскольку именно фазовые переходы и их зависимость от легирующих элементов обеспечивает само течение металлургических процессов в этом мире. Итак, речь идет о следующих фазах:

  • α-фаза устойчива до +769 С, обладает объемно-центрированной кубической решеткой. α-фаза является ферромагнетиком, то есть, сохраняет намагниченность в отсутствии магнитного поля. Температура в 769 С является точкой Кюри для металла.
  • β-фаза существует от +769 С до +917 С. Структура модификации та же, но параметры решетки несколько другие. При этом сохраняются практически все физические свойства за исключением магнитных: железо становится парамагнетиком.
  • γ — фаза появляется в диапазоне от +917 до +1394 С. Для нее характера гранецентрированная кубическая решетка.
  • δ-фаза существует выше температуры в +1394 С, обладает объемно-центрированной кубической решеткой.

Выделяют также ε-модификацию, которая появляется при высоком давлении, а также в результате легирования некоторыми элементами. ε -фаза обладает плотноупакованной гексагонической решеткой.

Про физические и химические свойства железа поведает этот видеоролик:

Свойства и характеристики

Очень сильно зависят от его чистоты. Разница между свойствами химически чистого железа и обычного технического, а тем более легированной стали, весьма существенна. Как правило, физические характеристики приводят для технического железа с долей примесей 0,8%.

Необходимо отличать вредные примеси от легирующих добавок. Первые – сера и фосфор, например, придают сплаву хрупкость, не увеличивая твердость или механическую стойкость. Углерод в стали увеличивает эти параметры, то есть, является полезным компонентом.

  • Плотность железа (г/см3) в некоторой степени зависит от фазы. Так, α-Fe имеет плотность равную 7,87 г/куб. см при нормальной температуре и 7,67 г/куб. см при +600 С. Плотность γ-фазы ниже – 7,59 г/куб. см. а δ-фазы еще меньше – 7,409 г/куб.см.
  • Температура плавления вещества – +1539 С. Железо относится к умеренно тугоплавким металлам.
  • Температура кипения – +2862 С.
  • Прочность, то есть стойкость к нагрузкам разного рода – давление, растяжение, изгиб, регламентируется для каждой марки стали, чугуна и феррита, так что об этих показателях говорить в общем сложно. Так, быстрорежущие стали имеет предел прочности на изгиб равный 2,5–2,8 ГПа. А тот же параметр обычного технического железа составляет 300 МПА.
  • Твердость по шкале Мооса – 4–5. Специальные стали и химически чистое железо достигают куда более высоких показателей.
  • Удельное электрическое сопротивление 9,7·10-8 ом·м. Железо проводит ток куда хуже меди или алюминия.
  • Теплопроводность тоже ниже, чем у этих металлов и зависит от фазового состава. При 25 С составляет 74,04 вт/(м·К)., при 1500 С — 31,8 [Вт/(м.К)].
  • Железо прекрасно куется, причем как при нормальной, так и повышенной температуре. Чугун и сталь поддаются литью.
  • Биологически инертным вещество назвать нельзя. Однако токсичность его очень низкая. Связано это, правда, не столько с активностью элемента, сколько с неспособностью человеческого организма хорошо его усвоить: максимум составляет 20% от получаемой дозы.

К экологическим веществам железо отнести нельзя. Однако основной вред окружающей среде причиняет не его отходы, поскольку железо ржавеет и довольно быстро, а отходы производства – шлаки, выделяющиеся газы.

Производство

Железо относится к весьма распространенным элементам, так что и не требует больших расходов. Разрабатываются месторождения как открытым, так и шахтным методом. По сути, все горные руды включают в состав железо, но разрабатываются лишь те, где доля металла достаточно велика. Это богатые руды – красный, магнитный и бурый железняк с долей железо до 74 %, руды со средним содержанием – марказит, например, и бедные руды с долей железа не менее 26% – сидерит.

Богатая руда сразу же отправляется на завод. Породы со средним и низким содержанием обогащаются.

Существует несколько методов получения железных сплавов. Как правило, выплавка любой стали включает получение чугуна. Его выплавляют в доменной печи при температуре 1600 С. Шихту – агломерат, окатыши, загружают вместе с флюсом в печь и продувают горячим воздухом. При этом металл плавится, а кокс горит, что позволяет выжечь нежелательные примеси и отделить шлак.

Для получения стали обычно используют белый чугун – в нем углерод связан в химическое соединение с железом. Наиболее распространены 3 способа:

  • мартеновский – расплавленный чугун с добавкой руды и скрапа плавят при 2000 С с тем, чтобы уменьшить содержание углерода. Дополнительные ингредиенты, если они есть, добавляют в конце плавки. Таким образом получают самую высококачественную сталь.
  • кислородно-конвертерный – более производительный способ. В печи толщу чугуна продувают воздухом под давлением в 26 кг/кв. см. Может использоваться смесь кислорода с воздухом или чистый кислород с целью улучшить свойства стали;
  • электроплавильный – чаще применяется для получения специальных легированных сталей. Чугун палят в электрической печи при температуре в 2200 С.

Сталь можно получить и прямым методом. Для этого в шахтную печь загружают окатыши с большим содержанием железа и при температуре в 1000 С продувают водородом. Последний восстанавливает железо из оксида без промежуточных стадий.

В связи со спецификой черной металлургии на продажу попадает либо руда с определенным содержанием железа, либо готовая продукция – чугун, сталь, феррит. Цена их очень сильно отличается. Средняя стоимость железной руды в 2016 году – богатой, с содержанием элементов более 60%, составляет 50$ за тонну.

Стоимость стали зависит от множества факторов, что порой делает взлеты и падение цен совершено непредсказуемо. Осенью 2016 стоимость арматуры, горяче- и холоднокатаной стали резко возросла благодаря не менее резкому подъему цен на коксующийся уголь – непременного участника выплавки. В ноябре европейские компании предлагает рулон горячекатаной стали по 500 Евро за т.

Область применения

Сфера использования железа и железных сплавов огромна. Проще указать, где металл не применяется.

  • Строительство – сооружение всех видов каркасов, от несущего каркаса моста, до коробки декоративного камина в квартире, не может обойтись без стали разных сортов. Арматура, прутки, двутавры, швеллеры, уголки, трубы: абсолютно вся фасонная и сортовая продукция используется в строительстве. То же самое касается и листового проката: из него изготавливают кровлю, и так далее.
  • Машиностроение – по прочности и стойкости к износу со сталью очень мало, что может сравниться, так что детали корпуса абсолютного большинства машин изготавливаются из сталей. Тем более в тех случаях, когда оборудование должно работать в условиях высоких температур и давления.
  • Инструменты – с помощью легирующих элементов и закалки металлу можно придать твердость и прочность близкую к алмазам. Быстрорежущие стали – основа любых обрабатывающих инструментов.
  • В электротехнике использование железа более ограничено, именно потому, что примеси заметно ухудшают его электрические свойства, а они и так невелики. Зато металл незаменим в производстве магнитных частей электрооборудования.
  • Трубопровод – из стали и чугуна изготавливают коммуникации любого рода и вида: отопление, водопроводы, газопроводы, включая магистральные, оболочки для силовых кабелей, нефтепроводы и так далее. Только сталь способна выдерживать столь огромные нагрузки и внутреннее давление.
  • Бытовое использование – сталь применяется везде: от фурнитуры и столовых приборов до железных дверей и замков. Прочность металла и износостойкость делают его незаменимым.

Железо и его сплавы сочетают в себе прочность, долговечностью стойкость к износу. Кроме того, металл относительно дешев в производстве, что и делает его незаменимым материалом для современного народного хозяйства.

Про сплавы железа с цветными металлами и тяжелыми черными расскажет это видео:

Железо (латинское ferrum), fe, химический элемент viii группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54 fe (5,84%), 56 fe (91,68%), 57 fe (2,17%) и 58 fe (0,31%).

Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) - звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун ; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» - английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали , который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Ж. - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Ж. играют окислительно-восстановительные реакции - переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ fe 3+ восстанавливается до fe 2+ и легко мигрирует, а при встрече с кислородом воздуха fe 2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование - «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

Ж. может существовать в виде двух кристаллических решёток: a - и g - объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - fe с ОЦК-решёткой (а = 2,86645 å при 20°С). Между 910°С и 1400°С устойчива g -модификация с ГЦК-решёткой (а = 3,64 å). Выше 1400°С вновь образуется ОЦК-решётка d -fe (а = 2,94 å), устойчивая до температуры плавления (1539°С). a - fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g -fe и d -fe парамагнитны.

Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов . Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 å), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус fe 1,26 å). Твёрдый раствор углерода в g -fe наз. аустенитом , а в (a -fe- ферритом . Насыщенный твёрдый раствор углерода в g - fe содержит 2,0% С по массе при 1130°С; a -fe растворяет всего 0,02- 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твёрдый раствор углерода в a - fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности.

Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость , фосфор (даже 10 -20 % Р) - хладноломкость ; углерод и азот уменьшают пластичность , а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26 å

Ионные радиусы fe 2+ o,80 å, fe 3+ o,67 å

Плотность (20 o c) 7,874 г/см 3

t пл 1539°С

t kип около 3200 о С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт /(м·К )

Теплоёмкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоёмкость (0-1000 o c) 640,57 дж/ (кг ·К) .

Удельное электрическое сопротивление (20 ° С)

9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления

(0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м. 2

(19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв

170-210 Мн/м 2

Относительное удлинение 45-55%

Твёрдость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Конфигурация внешней электронной оболочки атома fe 3 d 6 4s 2 . Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись feo, окись fe 2 o 3 и закись-окись fe 3 o 4 (соединение feo с fe 2 o 3 , имеющее структуру шпинели ) . Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (fe 2 o 3 · n h 2 o). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной плёнкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. - воронения. При нагревании в водяном паре Ж. окисляется с образованием fe 3 o 4 (ниже 570°С) или feo (выше 570°С) и выделением водорода.

Гидроокись fe (oh) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом fe (oh) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись fe (oh) 3 . Закись feo проявляет основные свойства. Окись fe 2 o 3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с mgo), она образует ферриты - соединения типа fe 2 o 3 · n meo, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например k 2 feo 4 , солей не выделенной в свободном состоянии железной кислоты.

Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды fecl 2 и fecl 3 . При нагревании Ж. с серой образуются сульфиды fes и fes 2 . Карбиды Ж. - fe 3 c (цементит ) и fe 2 c (e -карбид) - выпадают из твёрдых растворов углерода в Ж. при охлаждении. fe 3 c выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, даёт с Ж. твёрдые растворы внедрения; из них выделяются нитриды fe 4 n и fe 2 n. С водородом Ж. даёт лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, fe 3 si) и фосфиды (например, fe 3 p).

Соединения Ж. с многими элементами (О, s и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов fe 2+ в узлах решётки замещена ионами fe 3+ ; для сохранения электронейтральности некоторые узлы решётки, принадлежавшие ионам fe 2+ , остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу fe 0,947 o.

Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная hno 3 (плотность 1,45 г/см 3 ) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная hno 3 растворяет Ж. с образованием ионов fe 2+ или fe 3+ , восстанавливаясь до mh 3 или n 2 o и n 2 .

Растворы солей 2-валентного Ж. на воздухе неустойчивы - fe 2+ постепенно окисляется до fe 3+ . Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей fe 3+ тиоцианат-ионов scn - даёт яркую кроваво-красную окраску вследствие возникновения fe (scn) 3 , что позволяет открывать присутствие 1 части fe 3+ примерно в 10 6 частях воды. Для Ж. характерно образование комплексных соединений.

Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путём его прямого восстановления из рудных концентратов водородом, природным газом или углём при относительно низких температурах.

Ж. - важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом s, Р, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Т. Л.

Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг, для поросят - до 200 мг, для супоросных свиней - 60 мг.

В. В. Ковальский.

В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52 fe, 55 fe и 59 fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; neogi p., iron in ancient india, calcutta, 1914; friend j. n., iron in antiquity, l.,1926; frank e. b., old french ironwork, camb. (mass.), 1950; lister r., decorative wrought ironwork in great britain, l., 1960.

cкачать реферат

Железо — всем известный химический элемент. Он относится к средним по химической активности металлам. Свойства и применение железа мы рассмотрим в этой статье.

Распространенность в природе

Существует довольно большое количество минералов, в состав которых входит феррум. Прежде всего, это магнетит. Он на семьдесят два процента состоит из железа. Его химическая формула — Fe 3 O 4 . Данный минерал еще называют магнитный железняк. Он обладает светло-серым цветом, иногда с темно-серым, вплоть до черного, с металлическим блеском. Наибольшее его месторождение среди стран СНГ находится на Урале.

Следующий минерал с высоким содержанием железа — гематит — он на семьдесят процентов состоит из данного элемента. Его химическая формула — Fe 2 O 3 . Его еще называют красным железняком. Он обладает окраской от красно-коричневой до красно-серой. Наибольшее месторождение на территории стран СНГ находится в Кривом Роге.

Третий по содержанию феррума минерал — лимонит. Здесь железа шестдесят процентов от общей массы. Это кристаллогидрат, то есть в его кристаллическую решетку вплетены молекулы воды, его химическая формула — Fe 2 O 3 .H 2 O. Как понятно из названия, данный минерал имеет желто-коричневатый цвет, изредка бурый. Он является одной из главных составляющих природных охр и используется в качестве пигмента. Его также называют бурый железняк. Самые крупные места залегания — Крым, Урал.

В сидерите, так называемом шпатовом железняке, сорок восемь процентов феррума. Его химическая формула — FeCO 3 . Его структура неоднородна и состоит из соединенных вместе кристаллов разного цвета: серых, бледно-зеленых, серо-желтых, коричнево-желтых и др.

Последний часто встречающийся в природе минерал с высоким содержанием феррума — пирит. Он обладает такой химической формулой FeS 2 . Железа в нем находится сорок шесть процентов от общей массы. Благодаря атомам серы данный минерал имеет золотисто-желтую окраску.

Многие из рассмотренных минералов применяются для получения чистого железа. Кроме того, гематит используют в изготовлении украшений из натуральных камней. Вкрапления пирита могут иметься в украшениях из лазурита. Кроме этого, в природе железо встречается в составе живых организмов — оно является одним из важнейших компонентов клетки. Данный микроэлемент обязательно должен поступать в организм человека в достаточном количестве. Лечебные свойства железа во многом связаны с тем, что данный химический элемент является основой гемоглобина. Поэтому употребление феррума хорошо сказывается на состоянии крови, а следовательно, и всего организма в целом.

Железо: физические и химические свойства

Рассмотрим по порядку два этих больших раздела. железа — это его внешний вид, плотность, температура плавления и т. д. То есть все отличительные черты вещества, которые связаны с физикой. Химические свойства железа — это его способность вступать в реакцию с другими соединениями. Начнем с первых.

Физические свойства железа

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.

Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все.

Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, - единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

С точки зрения химии

Данный элемент относится к металлам средней активности. Но химические свойста железа являются типичными и для всех остальных металлов (кроме тех, которые находятся правее водорода в электрохимическом ряду). Оно способно реагировать со многими классами веществ.

Начнем с простых

Феррум вступает во взаимодействие с килородом, азотом, галогенами (йодом, бромом, хлором, фтором), фосфором, карбоном. Первое, что нужно рассмотреть, - реакции с оксигеном. При сжигании феррума образуются его оксиды. В зависимости от условий проведения реакции и пропорций между двумя участниками они могут быть разнообразными. Как пример такого рода взаимодействиям можно привести следующие уравнения реакций: 2Fe + O 2 = 2FeO; 4Fe + 3O 2 = 2Fe 2 O 3 ; 3Fe + 2O 2 = Fe 3 O 4 . И свойства оксида железа (как физические, так и химические) могут быть разнообразными, в зависимости от его разновидности. Такого рода реакции происходят при высоких температурах.

Следующее — взаимодействие с азотом. Оно также может произойти только при условии нагревания. Если взять шесть молей железа и один моль азота, получим два моля нитрида железа. Уравнение реакции будет выглядеть следующим образом: 6Fe + N 2 = 2Fe 3 N.

При взаимодействии с фосфором образуется фосфид. Для проведения реакции необходимы такие компоненты: на три моля феррума - один моль фосфора, в результате образуется один моль фосфида. Уравнение можно записать следующим образом: 3Fe + P = Fe 3 P.

Кроме того, среди реакций с простыми веществами можно также выделить взаимодействие с серой. При этом можно получить сульфид. Принцип, по которому происходит процесс образования данного вещества, подобен описанным выше. А именно происходит реакция присоединения. Для всех химических взаимодействий подобного рода нужны специальные условия, в основном это высокие температуры, реже — катализаторы.

Также распространены в химической промышленности реакции между железом и галогенами. Это хлорирование, бромирование, йодирование, фторирование. Как понятно из названий самих реакций, это процесс присоединения к атомам феррума атомов хлора/брома/йода/фтора с образованием хлорида/бромида/йодида/фторида соответственно. Данные вещества широко используются в разнообразных отраслях промышленности. Кроме того, феррум способен соединяться с кремнием при высоких температурах. Благодаря тому что химические свойства железа разнообразны, его часто используют в химической отрасли промышленности.

Феррум и сложные вещества

От простых веществ перейдем к тем, молекулы которых состоят из двух и более различных химических элементов. Первое, что нужно упомянуть, - реакцию феррума с водой. Здесь проявляются основные свойства железа. При нагревании воды вместе с железом образуется (называется он так потому, что при взаимодействии с той же водой образует гидроксид, по-другому говоря — основание). Итак, если взять по одному молю обоих компонентов, образуются такие вещества, как диоксид феррума и водород в виде газа с резким запахом — также в молярных пропорциях один к одному. Уравнение такого рода реакции можно записать следующим образом: Fe + H 2 O = FeO + H 2 . В зависимости от пропорций, в которых смешать эти два компонента, можно получить ди- либо триоксид железа. Оба этих вещества очень распространены в химической промышленности, а также используются во многих других отраслях.

С кислотами и солями

Так как феррум находится левее водорода в электрохимическом ряду активности металлов, он спосособен вытеснять данный элемент из соединений. Примером этому является реакция замещения, которую можно наблюдать при добавлении железа к кислоте. Например, если смешать в одинаковых молярных пропорциях железо и сульфатную кислоту (она же серная) средней концентрации, в результате получим сульфат железа (ІІ) и водород в одинаковых молярных пропорциях. Уравнение такой реакции будет выглядеть таким образом: Fe + H 2 SO 4 = FeSO 4 + H 2 .

При взаимодействии с солями проявляются восстановительные свойства железа. То есть с помощью него можно выделить менее активный металл из соли. Например, если взять один моль и столько же феррума, то можно получить сульфат железа (ІІ) и чистую медь в одинаковых молярных пропорциях.

Значение для организма

Один из самых распространенных в земной коре химических элементов — железо. мы уже рассмотрели, теперь подойдем к нему с биологической точки зрения. Феррум выполняет очень важные функции как на клеточном уровне, так и на уровне всего организма. В первую очередь железо является основой такого белка, как гемоглобин. Он необходим для транспорта кислорода по крови от легких ко всем тканям, органам, к каждой клетке организма, в первую очередь к нейронам головного мозга. Поэтому полезные свойства железа невозможно переоценить.

Кроме того что он влияет на кровеобразование, феррум также важен для полноценного функционирования щитовидной железы (для этого нужен не только йод, как некоторые считают). Также железо принимает участие во внутриклеточном обмене веществ, регулирует иммунитет. Еще феррум в особенно большом количестве содержится в клетках печени, так как помогает нейтрализовать вредные вещества. Также он является одним из главных компонентов многих видов ферментов нашего организма. В суточном рационе человека должно содержаться от десяти до двадцати миллиграмм данного микроэлемента.

Продукты, богатые железом

Таких немало. Они есть как растительного, так и животного происхождения. Первые — это злаки, бобовые, крупы (в особенности гречка), яблоки, грибы (белые), сухофрукты, шиповник, груши, персики, авокадо, тыква, миндаль, финики, помидоры, брокколи, капуста, черника, ежевика, сельдерей и др. Вторые — печень, мясо. Употребление продуктов с высоким содержанием железа особенно важно в период беременности, так как организм формирующегося плода требует большого количества данного микроэлемента для полноценного роста и развития.

Признаки недостатка в организме железа

Симптомами слишком маленького количества феррума, поступающего в организм, являются усталость, постоянное замерзание рук и ног, депрессии, ломкость волос и ногтей, снижение интеллектуальной активности, пищеварительные расстройства, низкая работоспособность, нарушения в работе щитовидной железы. Если вы заметили несколько из этих симптомов, то стоит увеличить количество продуктов с содержанием железа в своем рационе либо купить витамины или пищевые добавки с содержанием феррума. Также обязательно нужно обратиться к врачу, если какие-либо из этих симптомов вы ощущаете слишком остро.

Использование феррума в промышленности

Применение и свойства железа тесно связаны. В связи с его ферромагнитностью, его применяют для изготовления магнитов — как более слабых для бытовых целей (сувенирные магниты на холодильник и т. д.), так и более сильных — для промышленных целей. В связи с тем что рассматриваемый металл обладает высокой прочностью и твердостью, его с древности использовали для изготовления оружия, доспехов и других военных и бытовых инструментов. К слову, еще в Древнем Египте было известно метеоритное железо, свойства которого превосходят таковые у обычного металла. Также такое особенное железо использовалось и в Древнем Риме. Из него изготавливали элитное оружие. Щит или меч, выполненный из метеоритного металла, мог иметь только очень богатый и знатный человек.

Вообще, металл, который мы рассматриваем в данной статье, является самым разносторонне используемым среди всех веществ данной группы. Прежде всего, из него изготавливаются сталь и чугун, которые применяются для производства всевозможных изделий, необходимых как в промышленности, так и в повседневной жизни.

Чугуном называется сплав железа и углерода, в котором второго присутствует от 1,7 до 4,5 процента. Если второго меньше, чем 1,7 процента, то такого рода сплав называется сталью. Если углерода в составе присутствует около 0,02 процента, то это уже обыкновенное техническое железо. Присутствие в сплаве углерода необходимо для придания ему большей прочности, термоустойчивости, стойкости к ржавлению.

Кроме того, в стали может содержаться много других химических элементов в качестве примесей. Это и марганец, и фосфор, и кремний. Также в такого рода сплав для придания ему определенных качеств могут быть добавлены хром, никель, молибден, вольфрам и многие другие химические элементы. Виды стали, в которых присутствует большое количество кремния (около четырех процентов), используются в качестве трансформаторных. Те, в составе которых много марганца (вплоть до двенадцати-четырнадцати процентов), находят свое применение при изготовлении деталей железных дорог, мельниц, дробилок и других инструментов, части которых подвержены быстрому стиранию.

Молибден вводят в состав сплава, чтобы сделать его более термоустойчивым — такие стали используются в качестве инструментальных. Кроме того, для получения всем известных и часто используемых в быту в виде ножей и других бытовых инструментов нержавеющих сталей необходимо добавление в сплав хрома, никеля и титана. А для того чтобы получить ударостойкую, высокопрочную, пластичную сталь, достаточно добавить к ней ванадий. При вводе в состав ниобия можно добиться высокой устойчивости к коррозии и воздействию химически агрессивных веществ.

Минерал магнетит, который был упомянут в начале статьи, нужен для изготовления жестких дисков, карт памяти и других устройств подобного типа. Благодаря магнитным свойствам, железо можно найти в устройстве трансформаторов, двигателей, электронных изделий и др. Кроме того, феррум могут добавлять в сплавы прочих металлов для придания им большей прочности и механической устойчивости. Сульфат данного элемента применяют в садоводстве для борьбы с вредителями (наряду с сульфатом меди).

Являются незаменимыми при очистке воды. Кроме того, порошок магнетита используется в черно-белых принтерах. Главный способ применения пирита — получение из него серной кислоты. Данный процесс происходит в лабораторных условиях в три этапа. На первой стадии пирит феррума сжигают, получая при этом оксид железа и диоксид серы. На втором этапе происходит превращение диоксида сульфура в его триоксид при участии кислорода. И на завершающей стадии полученное вещество пропускают через в присутствии катализаторов, тем самым и получая серную кислоту.

Получение железа

В основном добывают данный металл из двух основных его минералов: магнетита и гематита. Делают это с помощью восстановления железа из его соединений углеродом в виде кокса. Делается это в доменных печах, температура в которых достигает двух тысяч градусов по шкале Цельсия. Кроме того, есть способ восстановления феррума водородом. Для этого необязательно наличие доменной печи. Для осуществления данного метода берут специальную глину, смешивают ее с измельченной рудой и обрабатывают водородом в шахтной печи.

Заключение

Свойства и применение железа разнообразны. Это, пожалуй, самый важный в нашей жизни металл. Став известным человечеству, он занял место бронзы, которая на тот момент была основным материалом для изготовления всех орудий труда, а также оружия. Сталь и чугун во многом превосходят сплав меди с оловом с точки зрения своих физических свойств, устойчивости к механическим воздействиям.

Кроме того, железо на нашей планете более распространено, чем многие другие металлы. его в земной коре составляет почти пять процентов. Это четвертый по распространенности в природе химический элемент. Также данный химический элемент очень важен для нормального функционирования организма животных и растений, прежде всего потому, что на его основе построен гемоглобин. Железо является важнейшим микроэлементом, употребление которого важно для поддержания здоровья и нормальной работы органов. Кроме вышеперечисленного, это единственный металл, который обладает уникальными магнитными свойствами. Без феррума невозможно представить нашу жизнь.

2024 litera-globus.ru. literaglobus - Образовательный портал.