Обеспечение человечества энергией и сырьём. Обеспечение энергией Стимулирование усваивания корма

Здоровье животных и правильное питание в переходный период определяют, насколько быстро можно будет оптимизировать потребление корма и энергетическую ценность рациона после отела!

Повышенное потребление энергии во время пика лактации

  • Повышение потребления корма
  • Повышение энергетической ценности рациона

Кормление в переходный период

В идеале, балл упитанности Голштино-Фризских коров до отела должен быть скорректирован до 3,5.

  • Начало периода сухостоя (Сухостой I)
    Следует избегать высокоэнергетического рациона, поскольку после отела сильно упитанные животные хуже усваивают корм.
  • Подготовительное кормление (Сухостой II, 2–3 недели до отела)
    В дополнение к основным компонентам высококачественного корма, осуществляют постепенное повышение энергетической ценности (эквивалентно примерно 3 кг концентрата/корову/сутки), что обеспечивает возросшие потребности коровы в энергии в конце стельности и подготавливая рубец для богатого концентратами рациона после отела (6).
  • Корректировка рациона (3 недели после отела)
    Стимулирование потребления корма - это приоритет, поскольку у коров отмечается тенденция к отрицательному энергетическому и кормовому балансу.
    Постепенное внедрение мер, направленных на стимулирование усвоения корма и повышение питательности рациона, позволит не допустить развития у животных подострого ацидоза рубца. Любые изменения, связанные с основными компонентами корма, не должны быть резкими. В данный период не следует добавлять в корм жиры, т.к. это еще больше усилит дисбаланс между глюкогенными и липогенными носителями энергии, снижая, таким образом, усвояемость корма (Drackley 1999).

Стимулирование усваивания корма

  • Основные компоненты корма высокого качества
  • Постепенное, медленное повышение питательности
  • Обеспечение регулярного потребления свежей полнорационной кормосмеси
  • Длина волокон, скорректированная для сокращения периода нахождения корма в рубце (28)

Повышение питательности

  • Добавление в корм крахмала, защищенного от распада в рубце (5,25)
  • Добавление в рацион жиров после отела (27) для снижения риска развития ацидоза рубца

Лечение кетоза - кормление

  • Глюкоза внутривенно или в виде жидкой лекарственной формы для перорального введения
    Пероральное замещение большого количества глюкозы (до 2 кг/день) хорошо переносится животными, т.к. глюкоза всасывается через эпителий рубца (1,3) и хранится в простейших рубца в виде гликогена (10). Протозойный гликоген доступен для животного (после попадания в рубец) в качестве источника глюкозы.
  • Глюкопластические вещества (пропионат натрия, пропиленгликоль и т. д.)
  • Ссылка на другие альтернативные варианты парентеральной терапии (глюкокортикоиды, Катозал ® , ...)

Повышение усвояемости корма

  • Высококачественный привлекательный корм (добавление ароматизаторов: эфирные масла)
  • Структура волокон, оптимизированная для быстрого прохождения по рубцу и минимизации риска развития ацидоза (волокна, растворимые в нейтральном детергенте (peNDF) > 8 мм примерно 15%)
  • Контроль состояния здоровья животных - профилактика молочной лихорадки!

Повышение питательности

  • Добавление к корму крахмала, защищенного от распада в рубце
    • Кукуруза
    • Сорго
    • Ячмень (при необходимости обработанный молочной кислотой)
    • Пшеница, обработанная NaOH
  • Кормовой жир (> 3 недель после отела)
    • Общее содержание жира в сухом веществе - 5% (до 7% защищенных жиров)

Заполнение рубца

Заполнение рубца является показателем того, как корова потребляет корм. Сзади должно быть видно вздутие рубца (D. Zaaijer, W.D.J. Kremer, J.P.T.M. Noordhuizen).

1 балл

Ярко выражены остистые отростки поясничных позвонков, это придает пояснице вид «полки». Ярко выражена голодная ямка. Четко очерчены седалищные бугры и маклоки. На них отсутствует жировая ткань. Области тазобедренного сустава, ануса, седалищно-прямокишечная ямка и поверхность бедер впалые. Вульва выступает.

2 балла

Выражены остистые отростки. Эффект «полки» менее заметен. Голодная ямка более сглажена. Выражены седалищные бугры и маклоки. Области кресца и бедер менее впалые. Вокруг корня хвоста больше мягких тканей. Седалищно-прямокишечная ямка покрыта небольшим количеством жировой ткани. Концы поперечно-реберных отростков пальпируются, но визуально менее заметны.

Обеспечение строительства энергией и водой. Производство строительно-монтажных и других работ на строительной площадке требует потребления электроэнергии, горячей и холодной воды, пара и сжатого воздуха.

Наилучшим вариантом питания строительной площадки электроэнергией, водой, газом и паром являются постоянные сети действующих или проектируемых систем. Если проектом строительства предприятия, района застройки предусматривается прокладка сетей энерго-, водо-, газоснабжения, канализации, то эта прокладка осуществляется в подготовительный период к строительству.

Менее приемлемым вариантом является временное обеспечение строительной площадки указанными ресурсами на период строительства объектов. Устройство временных сетей водо-, энергоснабжения и других сетей осуществляется также в подготовительный период к строительству.

Потребная электрическая нагрузка на строительство комплекса объектов в составе ПОС определяется по удельной потребной электрической мощности на 1 или 100 млн р. сметной стоимости строительно-монтажных работ. Удельная мощность определяется на основе данных статистики о фактическом потреблении электроэнергии строительно-монтажными организациями. Она различна и зависит от вида строительства и характера возводимых объектов. В жилищно-гражданском строительстве удельная электрическая мощность составляет от 70 до 205 киловольтампер (кВА) на 1 млн р. сметной стоимости строительно-монтажных работ в ценах 1984 г. Для объектов промышленного назначения этот показатель колеблется от 60 до 400 кВА.

Расчет потребности энергии. Расчетная мощность силового трансформатора М тр определяется по формуле

М тр = VmК р ,

где V- годовой объем строительно-монтажных работ, подлежащих выполнению в период наивысшей интенсивности хода работ, млн р.; т - величина удельной электрической мощности, кВА/млн р.; К р - коэффициент, учитывающий район строительства, длительность зимнего периода и уровень низких температур.

Потребная электрическая нагрузка на строительстве отдельного объекта в ППР рассчитывается по мощности электроприемников (электродвигателей, осветительных приборов, электроподогревающих установок и т.п.) и мощности, потребной на технологические нужды (электропрогрев бетона и др.). Величина мощности трансформатора М тр определяется по формуле

где 1,1 - коэффициент, учитывающий потери электроэнергии в сети; М м - силовая мощность электродвигателей строительных машин и установок, кВт; М т - потребная мощность на технологические нужды, кВт; М о.в - мощность внутренних установленных приборов освещения, вентиляции и кондиционирования воздуха, кВт; М о.н. - мощность установленных приборов общего и местного наружного освещения, кВт; К 1 К 2 , К 3 , К 4 - коэффициенты, учитывающие одновременность работы электродвигателей, приборов освещения, вентиляции, выполнения работ, требующих расхода энергии на технологические нужды; cos φ - коэффициент мощности, зависящий от характера потребителей электроэнергии.



Значения коэффициентов, учитывающих одновременность работы электродвигателей и электроприборов, а также параметра cos φ приведены в табл. 1.

Показатели потребной мощности приборов освещения рассчитываются путем умножения освещаемой площади на удельные показатели, приведенные в табл. 2.

На основе рассчитанной мощности производится выбор источников энергоснабжения и подбор трансформатора. Наиболее экономичным и удобным способом удовлетворения потребности в электроэнергии является получение ее от районных сетей высокого напряжения на 6 и 10 кВ. В этом случае в подготовительный период к строительству сооружаются ответвление от районной высоковольтной сети и трансформаторная электроподстанция.

Если строительство или реконструкция объектов осуществляется вблизи от городских квартальных подстанций или от действующего предприятия, то на строительных площадках или объектах устанавливаются электрощитовые, которые подключаются к указанным постоянным электроподстанциям. Разрешение на подключение дают служба главного энергетика предприятия или службы квартальных электросетей в соответствии с рассчитанной потребной электрической мощностью.

Таблица 1- Коэффициенты спроса электроэнергии и мощности



При отсутствии возможности получения электроэнергии от районных высоковольтных сетей, квартальных электроподстанций и подстанций промышленных предприятий, а также при строительстве в неосвоенных районах применяются временные передвижные электростанции малой и средней мощности (до 100 кВт) и крупные электростанции мощностью до 1000 кВт. Передвижные электростанции в большей степени применяются при строительстве линейных сооружений (магистральных трубопроводов, железных дорог, линий электропередачи), мостов, когда поблизости нет районных высоковольтных электросетей. Запитка источников электропотребления на строительной площадке производится электрическими кабелями и проводами по воздушной разводке.

Таблица 2 - Показатели удельной мощности осветительных приборов

Кроме электроэнергии на строительных площадках возникает потребность и в других видах энергии, в частности в сжатом воздухе при работе с применением пневмоинструмента (перфораторы, бетоноломы, клепальный инструмент и др.), в паре для термообработки бетонных и железобетонных изделий, изготавливаемых непосредственно на объекте. Для временного отопления временных помещений и строящихся зданий и сооружений также необходим теплоноситель.

Расход сжатого воздуха, м 3 /мин, в целом по крупным стройкам при разработке ПОС определяется ориентировочно по укрупненным нормам на 1 млн. р. сметной стоимости строительно-монтажных работ. По конкретным объектам при разработке ППР этот расход Q с.в. определяется по нормам расхода при работе соответствующих инструментов по формуле

где q t - норма расхода сжатого воздуха i -м инструментом, механизмом; n i - количество применяемых i -х инструментов и механизмов; К i - коэффициенты, учитывающие одновременность работы механизмов и инструментов, принимаемые равными 1 при количестве инструментов и механизмов от 1 до 2 и 0,6 при количестве инструментов или механизмов от 8 до 10.

Источниками получения сжатого воздуха могут быть передвижные и стационарные компрессорные установки разной производительности. При проведении работ на реконструкции объектов действующих предприятий сжатый воздух может быть получен от их сетей. Подведение воздуха к местам его потребления осуществляется по металлическим трубам, а подключение инструментов к трубопроводу - с помощью гибких резиновых шлангов. Диаметр трубопроводов для подачи сжатого воздуха 4в рассчитывается по формуле

Расчет потребности теплоэнергии. Наиболее распространенным теплоносителем для обогрева помещений является горячая вода.

Таблица 3 - Тепловые характеристики зданий и сооружений

Она же используется в душевых установках и умывальных комнатах. При производстве бетонных работ в зимнее время может использоваться горячий пар. Проектирование горячего водо- и пароснабжения начинается с расчета потребности в тепле по отдельным потребителям и по строительной площадке в целом. После этого определяется источник теплоснабжения и проектируются наружные и внутренние сети паропровода и горячего водопровода. Расход тепла, необходимого для отопления временных помещений и временного отопления возводимых зданий и сооружений Q от, кДж/час, рассчитывается по формуле

где - объем i -го отапливаемого здания по наружному обмеру; q i - удельная тепловая характеристика i -го здания; а - коэффициент, зависящий от величины расчетной температуры наружного воздуха; t в и t н - расчетные температуры соответственно внутреннего в помещениях и наружного воздуха.

Тепловые характеристики зданий и сооружений принимаются по справочным данным, часть которых приведена в табл. 3.

Расход тепла на производственные нужды определяется в каждом конкретном случае исходя из объемов работ, требующих расхода тепла, и расчетных норм его расхода в зависимости от температуры наружного воздуха, характера применяемой технологии производства работ. Для этого существуют соответствующие таблицы и графики.

Общий расход тепла Q о б определяется суммированием его затрат на отопление и производственные нужды с учетом возможных его потерь по формуле

Q об = (Q от + Q п.н.)K 1 K 2

где Q от + Q п.н - расчетный расход тепла соответственно на отопление и производственно-технологические нужды; К 1 - коэффициент, учитывающий потери тепла в сети, принимаемый ориентировочно равным 1,15; К 2 - коэффициент, предусматривающий добавку тепла на неучтенные потребности.

При строительстве в городских условиях, а также на территориях действующих предприятий в большинстве случаев имеется возможность получения теплоэнергии от существующих теплоэлектроцентралей (ТЭЦ), центральных котельных. Если проектом строительства крупных предприятий или районов застройки предусматривается строительство котельной, то оно осуществляется в подготовительный период к строительству и в последующем используется в процессе возведения зданий и сооружений. Если указанных возможностей нет, то организуется создание временного источника получения тепла. В качестве источника могут использоваться передвижные котельные установки, старые паровозы и локомобили.

По рассчитанной потребности в теплоэнергии и мощности котельных и других установок, по выработке тепла на строительной площадке определяют потребность в топливе. Она рассчитывается путем деления расчетного количества тепла на теплотворную способность топлива в тех же единицах.

Для подачи тепла к местам его потребления по возможности используют постоянные сети, предусмотренные проектом. Для этого их прокладывают заблаговременно к началу необходимой подачи тепла. Перед сдачей объектов в эксплуатацию использованные сети дополнительно проверяют и при необходимости восстанавливают. В качестве топлива во временных котельных может использоваться не только мазут, каменный уголь, соляровое масло, но и природный газ. В таком случае предусматривают подключение временных котельных к газопроводу, прокладку газопровода.

Расчет потребности воды. Холодная вода на строительных площадках расходуется на производственные (приготовление бетонов и растворов, полив кирпича и др.), хозяйственные (душевые установки, канализованные туалеты, умывальники, питьевые установки) нужды, а также на случай возникновения пожаров.

Общий расчетный часовой расход воды на строительной площадке, л, по которому определяется диаметр временного водопровода, (2 расч принимается равным максимальному из двух следующих значений:

Q расч = Q с.п. + Q с.м. + Q х.п

Q расч = Q пож

где Q cn , Q cm , Q nx , Q пож - максимальный часовой расход воды соответственно на строительные процессы, строительные машины и транспорт (мойка и др.), хозяйственные и питьевые нужды, на пожаротушение, л.

Максимальные часовые расходы воды на строительные процессы, строительные машины, хозяйственные и питьевые нужды рассчитываются по формулам

где V i - объемы выполнения i-x видов строительно-монтажных работ, которые требуют потребления воды, м 3 ; N j - количество машин, транспортных средств j -го типа (марки), которые требуют расхода воды, ед.; Ч см - численность рабочих, руководителей и специалистов, работающих в смену на строительной площадке в самый напряженный период, чел.; q i q j , q - нормы расхода воды соответственно на единицу объема работ, на одну строительную машину или транспортное средство, на одного человека, принимаемые по справочникам, л; К i K j , К - коэффициенты неравномерности потребления воды при производстве строительных работ, мойке и заправке строительных машин и транспортных средств, санитарно-гигиенических процедурах; t - продолжительность смены, ч.

Ниже приведены нормы расхода воды на производственные нужды (средний расход воды) и значения коэффициентов неравномерности потребления воды в течение смены.

Нормы расхода воды в строительстве на производственные нужды, л

Приготовление 1 м 3:
бетонной смеси 200...300
цементного раствора 170...210
известкового и сложного раствора 250...300
Гашение извести на 1т 2500...3500
Механизированная промывка 1 м 3:
гравия или щебня 750... 1000
Песка 750…1250
Поливка:
кирпича на 1 тыс. шт. в сут 200...250
Бетона на 1 м 3 в сут. 200... 250
Штукатурка стен при готовом растворе на 1 м2 2...6
Устройство щебеночной подготовки под полы с поливкой водой на 1 м3 650...700
Заправка и мойка в сут:
на 1 автомобиль 300... 400
на 1 трактор 150...250
на 1 экскаватор с двигателем внутреннего сгорания 5...10
Коэффициенты неравномерности потребления воды в течение смены
производственные расходы 1,6
Подсобные предприятия 1,25
Силовые установки 1,1
Транспортное хозяйство 2,0
Санитарно-бытовые устройства на стройплощадке 2,7

Норма расхода воды на пожаротушение принимается по согласованию с органами пожарного надзора. Обычно эта норма принимается равной 10 л/с при расположении гидрантов через каждые 80 м по трассе водопровода. По данным максимального расчетного расхода воды в смену рассчитывается диаметр водопровода d, мм. Формула расчета имеет следующий вид:

где Q расч - расчетный расход воды, л/с; v - скорость движения воды по трубам, принимаемая равной 1,5...2,0 м/с при большом расходе воды и 0,7... 1,2 м/с - при малом.

По полученной согласно формуле (1) величине диаметра трубопровода принимается ближайший больший размер трубы для прокладки временного водопровода. В любом случае по требованиям пожарной безопасности диаметр водопровода не должен быть менее 100 мм.

Водопроводная сеть, если предоставляется возможным, должна быть закольцована, с тем чтобы в случае повреждения трубопровода в каком-либо месте вода могла быть подана с другой стороны. Однако допускается и тупиковая схема подачи воды, или комбинированная, при которой одна часть трубопровода закольцована, а другая часть представляет собой тупиковые ветви.

Источниками водоснабжения могут быть существующие водопроводные коллекторы, артезианские скважины, открытые водоемы. Вода из открытых водоемов используется на производственные нужды и при тушении пожаров. В таких случаях прокладываются раздельные системы водоснабжения - производственная хозяйственно-питьевая.

Для отвода воды со строительной площадки предусматриваете устройство временной канализации. В целях уменьшения сетей временной канализации места мойки строительных машин, транспорта, сброса бытовых стоков желательно располагать как можно ближе к существующей канализационной сети.

Триединство. Россия перед близким Востоком и недалеким Западом. Научно-литературный альманах. Выпуск 1 Медведко Леонид Иванович

Обеспечение человечества энергией в долгосрочной перспективе

Обеспечение энергетической безопасности мирового сообщества в интересах настоящего и будущего поколений – обязательное условие развития мировой энергетики.

Энергетический рационализм – важнейшая составляющая развития человечества в XXI в. За счет энергосбережения в середине века прогнозируется экономить в год 6 млрд т у. т., что эквивалентно современной добыче нефти и газа, а к 2100 г. – 18 млрд ту. т., то есть больше, чем весь современный мировой энергобаланс – 14 млрд т у. т. Энергосбережение позволит сохранить значительный объем природных ресурсов для будущих поколений.

В период 2050-2100 гг. продолжится многократный рост угольной и атомной отраслей, а также возрастет значение возобновляемых источников энергии. Производство энергии с использованием нефти и газа сохранится на уровне 2050 г. Новые открытия, особенно в ядерной физике, приведут к гигантским изменениям в энергетике, но их потенциал невозможно оценить даже гипотетически. Если учесть, что при сооружении реакторов новых поколений возникают все более сложные научные и технические проблемы, становится ясно, что потребуется много десятилетий для их промышленного внедрения.

Наиболее важные элементы глобальной энергетической безопасности:

1) диверсификация источников энергии, то есть экономика не должна чрезмерно зависеть от какого-либо одного энергоносителя, недопустима моноструктура энергетического баланса.

2) экологическая приемлемость, то есть развитие энергетики не должно сопровождаться увеличением ее негативного воздействия на окружающую среду.

3) рациональное потребление традиционных углеводородных ресурсов, то есть использование органического топлива в энергетике не должно приводить к нехватке его для химической промышленности.

4) переход от простых поставок сырья к международному сотрудничеству в области переработки энергоресурсов, обмена новейшими технологиями, широкому взаимодействию в инвестиционной сфере, а также в разработке современных норм энергосбережения.

5) высокие темпы освоения возобновляемых источников энергии позволят снизить зависимость мировой экономики от поставок нефти и газа и минимизировать затраты на транспортировку энергоресурсов.

6) интенсификация международных научных исследований во всех отраслях энергетики.

Обеспечение энергетической безопасности мирового сообщества может быть достигнуто только с учетом долговременных ориентиров и долгосрочных прогнозов и должно опираться на результаты глобального мониторинга энергоресурсов планеты и их использования.

Дальнейшая интеграция государств при решении научных и технических задач будет способствовать успешному внедрению инновационных технологий. Во многих сферах энергетики потребуются создание и реализация крупных программ, подобных международным разработкам при создании космических аппаратов или термоядерного реактора.

В начале XXI в. интенсивно формируется единое мировое энергетическое пространство – залог энергетической безопасности человечества. Для большей динамичности этого процесса в ближайшие годы необходимо разработать методологическую, нормативно-правовую и организационную основу мировой энергетики. Главнейшая задача второго этапа – в 2015-2030 гг. начать реализацию проектов в рамках Единой международной программы управления топливно-энергетическим комплексом.

На третьем этапе на основе долгосрочных общественно-государственных программ должна получить развитие система «Энергетика – Экономика – Природа – Общество», базисом которой призвана стать «зеленая» энергетика. Подобная глобальная программа XXI в. может быть создана под эгидой ООН при широком участии представителей власти, бизнеса, авторитетных ученых и общественных организаций.

В XXI в. нефть, газ и уголь останутся основными источниками мировой энергетики. Высокая эффективность этих источников энергии имеет большое значение для устойчивого развития человечества. Вместе с тем стратегия развития мировой энергетики должна учитывать перспективы использования экологически чистых источников энергии и новейших технологий их освоения, что позволит гарантировать энергобезопасность нашей цивилизации. Мировое сообщество должно совершить грандиозный научно-технический прорыв в освоении энергии земных недр, океана, солнца, космоса и мирного атома. Только тогда мы сможем удовлетворять растущий спрос начистую, обильную, надежную и безопасную энергию основу высокого уровня жизни, развитой экономики и культуры, международной и национальной безопасности. Этот источник жизненной силы мы обязаны многократно приумножить и передать в надежные руки наших потомков.

Из книги Хронолого-эзотерический анализ развития современной цивилизации. Книга 4. За семью печатями автора Сидоров Георгий Алексеевич

Из книги Третий Проект. Том I `Погружение` автора Калашников Максим

Какой энергией питается цивилизация? Цивилизация как сложная органическая система обладает и своей энергией. Иначе она не смогла бы жить и действовать. Но что это за энергия? Ведь цивилизация – это не автомобиль, который возит запас энергии в своем баке с горючим, и не

Из книги Штрафники не кричали: «За Сталина!» автора Рубцов Юрий Викторович

Тыловое обеспечение Отвечая на вопрос, в самом ли деле штрафники, как это показано в фильме «Штрафбат», были обносившимися, постоянно голодными и воевали немецким оружием, не обойтись без рассказа о том, как шло обеспечение штрафных частей оружием, боеприпасами, вещевым

Из книги Великий Линкольн. «Вылечить раны нации» автора Тененбаум Борис

Ведение войны с должной энергией… IЕсть такой анекдот: некий ирландец идет по улице Дублина и видит, что в баре происходит дикий скандал и драка. Летят бутылки, трещит разбиваемая мебель, из рaзбитых окон вылетают стулья и так далее. Немного поколебавшись, ирландец

Из книги Вперед, к победе автора Фурсов Андрей Ильич

РУССКИЙ УСПЕХ В РЕТРОСПЕКТИВЕ И ПЕРСПЕКТИВЕ: «ДОБРЫМ МОЛОДЦАМ УРОК» IТема этой статьи - успехи России и успехи русских (это далеко не всегда совпадает) в исторической ретроспективе и уроки этой ретроспективы. Вопрос, над которым я хочу поразмышлять - какие периоды

Из книги Большой десант. Керченско-Эльтигенская операция автора Кузнецов Андрей Ярославович

4.2. Оперативное обеспечение 4.2.1. РазведкаОсновная информация в период подготовки была получена воздушной разведкой. Большую часть этой работы выполнили 366-й орап 4-й воздушной армии и 30-й орап ВВС ЧФ. Много летали на разведку 249-й и 790-й истребительные полки 229-й дивизии,

Из книги Теоретическая география автора Вотяков Анатолий Александрович

Глава 4. Что обеспечивает катастрофу такой энергией? Введение. Геометрически географическая система координат безупречна - положение точки определяется широтой, долготой и высотой над уровнем моря, но с точки зрения физики эта система не столь безупречна, поскольку в

Из книги Принуждение, капитал и европейские государства. 990– 1992 гг автора Тилли Чарльз

Современные военные в исторической перспективе Начиная с XVI в. и до самого недавнего времени, западные государства включали остальные страны мира в свою систему посредством колонизации, установления торговых связей и путем прямых переговоров. Самые недавние вступили в

Из книги Конфессия, империя, нация. Религия и проблема разнообразия в истории постсоветского пространства автора Семенов Александр

Советский вариант в сравнительной перспективе Исторически сложилось так, что первоначально религиозные исламские институты развивались вне государственного контроля. Ситуация изменилась в новое время. Для современных государств была характерна общая тенденция,

Из книги Тыл Советских Вооруженных Сил в Великой Отечественной войне автора Военное дело Коллектив авторов --

Инженерное обеспечение Инженерное оборудование морских театров военных действий в годы войны требовало больших сил и средств, несмотря на то что оно велось в ограниченных по сравнению с довоенным периодом масштабах. В 1941–1942 гг. в основном осуществлялось

Из книги «Вдовствующее царство» [Политический кризис в России 30–40-х годов XVI века] автора Кром Михаил Маркович

4. Проблема регентства в сравнительно-исторической перспективе Приведенные в этой главе наблюдения позволяют сделать вывод о том, что широко распространенные в литературе представления о Елене Глинской как о «регентше» и полновластной правительнице страны нуждаются,

Из книги История России: конец или новое начало? автора Ахиезер Александр Самойлович

Из книги Археология. В начале автора Фаган Брайан М.

Управление культурными ресурсами в глобальной перспективе Мы говорили об УКР главным образом в США. Но сохранение прошлого и защита культурных ресурсов являются общемировой проблемой (Клир - Cleere, 1989; 1986; Лейтон - Layton, 1989; О’Киф - Prottand O’Keefe, 1984; Шмидт и макинтош Schmidt and

Из книги Прорваться в будущее. От агонии – к рассвету! автора Калашников Максим

О войне, «мягкой силе» и перспективе «многоэтажного» человечества В связи с этим Г.Малинецкий видит три варианта будущего.Первый – продолжение прежних игр. Это вариант, который сейчас разворачивают американцы. Как считает профессор, мы живем сегодня в этаких «новых

Из книги Средневековая Европа. Восток и Запад автора Коллектив авторов

Андрей Виноградов Стратегия имянаречения у восточнохристианских правителей VII–XIII вв. в сравнительной перспективе (Багратиды, Комнины, Рюриковичи): an approach Недавние исследования А. Ф. Литвиной и Ф. Б. Успенского выявили важнейший механизм в имянаречении у русских

Из книги Прибалтика на разломах международного соперничества. От нашествия крестоносцев до Тартуского мира 1920 г. автора Воробьева Любовь Михайловна

VI.5. Вторая фаза аграрной реформы «на остзейский манер»: новые крестьянские законы и их социально-политические последствия в среднесрочной и долгосрочной перспективе Поводом к принятию новых остзейских крестьянских законов послужил протест крестьян, выразившийся в

В настоящее время для производства энергии наиболее широко используются топливные ресурсы, обеспечивая около 75% её мировой выработки. О их преимуществах можно много говорить - они относительно локализованы в нескольких крупных скоплениях, легки в эксплуатации и дают дешёвую энергию (если, конечно, не учитывать ущерб от загрязнения Одним из перспективных направлений энергетики является ядерная энергетика. В атомных электростанциях электричество вырабатывается в ходе реакций ядерного распада, сопровождающихся огромным выделением энергии при сжигании относительно небольшого количества топлива. При данном уровне потребления исследованных месторождений урана хватит более чем на 5000000000 лет - за это время успеет сгореть даже наше Солнце. Вероятность катастроф и аварий на АЭС несколько сдерживает развитие этой отрасли, вызывая недоверие общественности к ядерной энергетике.

Однако в исторической перспективе аварии на тепло- и гидроэлектростанциях стали причиной смерти куда большего количества людей, не говоря уже об ущербе экологии. Ещё одним способом получения энергии, волнующим умы учёных уже не первое десятилетие, является ядерный синтез. При ядерном синтезе выделяется в сотни раз больше энергии, чем при распаде, а запасов топлива для таких реакторов хватит на многие миллиарды лет. Однако подобную реакцию пока что не удаётся поставить под контроль, и появление первых таких установок ожидается не ранее 2050 года. Альтернативу этим видам энергоресурсов, возможно, смогут составить возобновляемые источники: гидроэнергия, энергия ветра и приливных волн, солнечная, геотермальная, термальная энергия вод океана и биоэнергия. До промышленной революции возобновляемые ресурсы были основным источником энергии. Твёрдое биотопливо - к примеру, дерево - всё ещё сохраняет своё значение для бедного населения развивающихся стран. Биомасса (сжигание органических материалов для генерирования энергии), биотопливо (переработка биоматериалов для синтеза этанола) и биогаз (анаэробная переработка биологически отходов) - ещё одни возобновляемые источники энергии, которые не стоит сбрасывать со счёта. Они не могут обеспечить производства энергии в глобальных масштабах, однако способны вырабатывать до 10МВ/ч. К тому же они могут покрыть расходы на утилизацию биоотходов.

Гидроэнергия - единственный возобновляемый источник энергии из используемых в наше время, обеспечивающий значительную долю мирового производства энергии. Потенциал гидроэнергетики раскрыт незначительно, в долгосрочной перспективе объёмы получаемой энергии возрастут в 9-12 раз. Однако строительству новых дамб препятствуют сопряжённые с этим экологические нарушения. В этой связи возрастает интерес к проектам мини-гидроэлектростанций, которым удаётся избежать многих проблем больших дамб. Солнечные батареи сегодня могут преобразовать около 20% поступающей солнечной энергии в электричество.

Однако если создавать особые «светосборники» и занять ими хотя бы 1% земель, используемых под сельхозугодия, это могло бы покрыть всё современное энергопотребление. Причём производительность такого солнечного коллектора от 50 до 100 раз больше, чем производительность средней ГЭС. Солнечные батареи могут быть установлены и на свободной поверхности существующих промышленных инфраструктур, что позволит избежать изъятия земель у парковых и посевных площадей. В данный момент правительство Германии проводит подобную программу, за которой с интересом наблюдают прочие страны. Благодаря исследованиям удалось выяснить, что фермы водорослей могут улавливать до 10%, термальные солнечные коллекторы - до 80% солнечной энергии, которая впоследствии может быть использована в различных целях. Энергия ветра на сегодняшний день является одним из самых дешёвых возобновляемых источников. Потенциально она может обеспечить в пять раз больше энергии, чем потребляется в мире сегодня, или 40 раз перекрыть потребность в электричестве. Для этого потребуется занять ветряными электростанциями 13% всей суши, а именно те районы, где особенно сильны движения воздушных масс.

Скорости ветра в море примерно на 90% превосходят скорости ветра на суше, а это значит, что морские ветряные установки могут вырабатывать куда больше энергии.

Геотермальная энергия, термальная энергия океана и энергия приливных волн - единственные на данный момент возобновляемые источники, не зависящие от солнца, однако они «сосредоточены» в определённых областях. Вся доступная энергия приливов может обеспечить около четверти современного энергопотребления. В настоящее время существуют масштабные проекты создания приливных электростанций. Геотермальная энергия имеет огромный потенциал, если принимать в расчет всё тепло, заключённое внутри Земли, хотя тепло, выходящее на поверхность, составляет 1/20000 от той энергии, что мы получаем от Солнца, или около 2-3 раз больше энергии приливов.

На данном этапе главными потребителями геотермальной энергии являются Исландия и Новая Зеландия, хотя виды на такого рода разработки имеют многие страны.

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

2024 litera-globus.ru. literaglobus - Образовательный портал.