Взаимное расположение двух плоскостей в пространстве. Взаимное расположение плоскостей

Пусть даны две плоскости

Первая плоскость имеет нормальный вектор (А 1 ;В 1 ;С 1), вторая плоскость (А 2 ;В 2 ;С 2).

Если плоскости параллельны, то векторы и коллинеарны, т.е. = l для некоторого числа l. Поэтому

─ условие параллельности плоскости.

Условие совпадения плоскостей:

,

так как в этом случае умножая второе уравнение на l = , получим первое уравнение.

Если условие параллельности не выполняется, то плоскости пересекаются. В частности, если плоскости перпендикулярны, то перпендикулярны и векторы , . Поэтому их скалярное произведение равно 0, т.е. = 0, или

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0.

Это необходимое и достаточное условие перпендикулярности плоскостей.

Угол между двумя плоскостями.

Угол между двумя плоскостями

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

это угол между их нормальными векторами и , поэтому

cosj = =
.

Прямая в пространстве.

Векторно-параметрическое уравнение прямой.

Определение. Направляющим вектором прямой называется любой вектор, лежащий на прямой или параллельный ей.

Составим уравнение прямой, проходящей через точку М 0 (х 0 ;у 0 ;z 0) и имеющей направляющий вектор = (а 1 ;а 2 ;а 3).

Отложим из точки М 0 вектор . Пусть М(х;у;z) ─ произвольная точка данной прямой, а ─ её радиус- вектор точки М 0 . Тогда , , поэтому . Это уравнение называется векторно-параметрическим уравнением прямой.

Параметрические уравнения прямой.

В векторно-параметрическом уравнении прямой перейдёт к координатным соотношениям (х;у;z) = (х 0 ;у 0 ;z 0) + (а 1 ;а 2 ;а 3)t. Отсюда получаем параметрические уравнения прямой

х = х 0 + а 1 t,

у = у 0 +а 2 t, (4)

Канонические уравнения прямой.

Из уравнений (4) выразим t:

t = , t = , t = ,

откуда получаем канонические уравнения прямой

= = (5)

Уравнение прямой, проходящей через две данные точки.

Пусть даны две точки М 1 (х 1 ;у 1 ;z 1) и М 2 (х 2 ;у 2 ;z 2). В качестве направляющего вектора прямой можно взять вектор = (х 2 – х 1 ;у 2 – у 1 ;z 2 – z 1). Поскольку прямая проходит через точка М 1 (х 1 ;у 1 ;z 1), то её канонические уравнения в соответствии с (5) запишутся в виде

(6)

Угол между двумя прямыми.

Рассмотрим две прямые с направляющими векторами = (а 1 ;а 2 ;а 3) и .

Угол между прямыми равен углу между их направляющими векторами, поэтому

cosj = =
(7)

Условие перпендикулярности прямых:

а 1 в 1 + а 2 в 2 + а 3 в 3 = 0.

Условие параллельности прямых:

l,

. (8)

Взаимное расположение прямых в пространстве.

Пусть даны две прямые
и
.

Очевидно, что прямые лежат в одной плоскости тогда и только тогда, когда векторы , и компланарны, т.е.

= 0 (9)

Если в (9) первые две строки пропорциональны, то прямые параллельны. Если все три строки пропорциональны, то прямые совпадают. Если условие (9) выполнено и первые две строки не пропорциональны, то прямые пересекаются.

Если же
¹ 0, то прямые являются скрещивающимися.

Задачи на прямую и плоскость в пространстве.

Прямая как пересечение двух плоскостей.

Пусть заданы две плоскости

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

Если плоскости не являются параллельными, то нарушается условие

.

Пусть, например ¹ .

Найдём уравнение прямой, по которой пересекаются плоскости.

В качестве направляющего вектора искомой прямой можно взять вектор

= × = =
.

Чтобы найти точку, принадлежащую искомой прямой, фиксируем некоторое значение

z = z 0 и решая систему


,

получаем значения х = х 0 , у = у 0 . Итак, искомая точка М(х 0 ;у 0 ;z 0).

Искомое уравнение

.

Взаимное расположение прямой и плоскости.

Пусть задана прямая х = х 0 + а 1 t, y = y 0 + a 2 t, z = z 0 + a 3 t

и плоскость

А 1 х + В 1 у +С 1 z + D 1 = 0.

Чтобы найти общие точки прямой и плоскости, необходимо решить систему их уравнений

А 1 (х 0 + а 1 t) + B 1 (y 0 + a 2 t) + C 1 (z 0 + a 3 t) + D 1 = 0,

(A 1 a 1 + B 1 a 2 + C 1 a 3)t + (A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1) = 0.

Если А 1 а 1 + В 1 а 2 + С 1 а 3 ¹ 0, то система имеет единственное решение

t = t 0 = -
.

В этом случае прямая и плоскость пересекаются в единственной точке М 1 (х 1 ;у 1 ;z 1), где

х 1 = х 0 + а 1 t 0 , y 1 = y 0 + a 2 t 0 , z 1 = z 0 + a 3 t 0 .

Если А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 ¹ 0, то прямая и плоскость не имеет общих точек, т.е. параллельны.

Если же А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 = 0, то прямая принадлежит плоскости.

Угол между прямой и плоскостью.

Две плоскости в пространстве могут располагаться либо параллельно друг другу, либо пересекаться.

Параллельные плоскости . В проекциях с числовыми отметками признаком параллельности плоскостей на плане служит параллельность их горизонталей, равенство заложений и совпадение направлений падения плоскостей: пл. S || пл. L - h S || h L , l S = l L , пад. I. (рис.3.11).

В геологии плоское однородное тело, сложенное той или иной породой, называют слоем. Слой ограничен двумя поверхностями, верхнюю из которых называют кровлей, а нижнюю – подошвой. Если слой рассматривается на сравнительно небольшой протяженности, то кровлю и подошву приравнивают к плоскостям, получая в пространстве геометрическую модель двух параллельных наклонных плоскостей.

Плоскость S - кровля, а плоскость L - подошва слоя (рис.3.12, а ). В геологии кратчайшее расстояние между кровлей и подошвой называют истинной мощностью (на рис.3.12, а истинная мощность обозначена буквой H). Помимо истинной мощности, в геологии используют и другие параметры слоя горной породы: вертикальную мощность – H в, горизонтальную мощность – L, видимую мощность – H вид. Вертикальной мощностью в геологии называют расстояние от кровли до подошвы слоя, измеренное по вертикали. Горизонтальная мощность слоя есть кратчайшее расстояние между кровлей и подошвой, измеренное в горизонтальном направлении. Видимая мощность – кратчайшее расстояние между видимым падением кровли и подошвы (видимым падением называют прямолинейное направление на структурной плоскости, т. е. прямую, принадлежащую плоскости). Таким образом, видимая мощность всегда больше истинной. Следует отметить, что у горизонтально залегающих слоев истинная мощность, вертикальная и видимая совпадают.

Рассмотрим прием построения параллельных плоскостей S и L, отстоящих друг от друга на заданном расстоянии (рис.3.12, б ).

На плане пересекающимися прямыми m и n задана плоскость S. Необходимо построить плоскость L, параллельную плоскости S и отстоящую от нее на расстоянии 12 м (т. е. истинная мощность – H = 12 м). Плоскость L расположена под плоскостью S (плоскость S - кровля слоя, плоскость L - подошва).

1) Плоскость S задают на плане проекциями горизонталей.

2) На масштабе заложений строят линию падения плоскости S - u S . На перпендикуляре к линии u S откладывают заданное расстояние 12 м (истинную мощность слоя H). Ниже линии падения плоскости S и параллельно ей проводят линию падения плоскости L - u L . Определяют расстояние между линиями падения обеих плоскостей в горизонтальном направлении, т. е. горизонтальную мощность слоя L.

3) Отложив на плане горизонтальную мощность от горизонтали h S , параллельно ей проводят горизонталь плоскости L с той же числовой отметкой h L . Следует обратить внимание на то, что если плоскость L расположена под плоскостью S, то горизонтальную мощность следует откладывать в направлении восстания плоскости S.


4) Исходя из условия параллельности двух плоскостей, на плане проводят горизонтали плоскости L.

Пересекающиеся плоскости . Признаком пересечения двух плоскостей обычно служит параллельность на плане проекций их горизонталей. Линию пересечения двух плоскостей в этом случае определяют точками пересечения двух пар одноименных (имеющих одинаковые числовые отметки) горизонталей (рис.3.13): ; . Соединив полученные точки N и M прямой m , определяют проекцию искомой линии пересечения. Если плоскость S (A, B, C) и L(mn) заданы на плане не горизонталями, то для построения их линии пересечения t необходимо построить две пары горизонталей с одинаковыми числовыми отметками, которые в пересечении и определят проекции точек R и F искомой прямой t (рис.3.14). На рис.3.15 представлен случай, когда у двух пересекающихся

плоскостей S и L горизонтали параллельны. Линией пересечения таких плоскостей будет горизонтальная прямая h . Для нахождения точки A, принадлежащей этой прямой, проводят произвольную вспомогательную плоскость T, которая пересекает плоскости S и L. Плоскость T пересекает плоскость S по прямой а (C 1 D 2), а плоскость L - по прямой b (K 1 L 2).

Точка пересечения прямых а и b , принадлежащих соответственно плоскостям S и L, будет общей для этих плоскостей: =А. Отметку точки А можно определить, проинтерполировав прямые a и b . Остается провести через A горизонтальную прямую h 2,9 , которая и является линией пересечения плоскостей S и L.

Рассмотрим еще один пример (рис.3.16) построения линии пересечения наклонной плоскости S с вертикальной плоскостью Т. Искомая прямая m определяется точками A и B, в которых горизонтали h 3 и h 4 плоскости S пересекают вертикальную плоскостью T. Из чертежа видно, что проекция линии пересечения совпадает с проекцией вертикальной плоскости: m º T. В решении геологоразведочных задач сечение одной или группы плоскостей (поверхностей) вертикальной плоскостью называется разрезом. Построенную в рассматриваемом примере дополнительную вертикальную проекцию прямой m называют профилем разреза, выполненного плоскостью T по заданному направлению.

Лекция № 5. Взаимное расположение прямых и плоскостей

1. Взаимное расположение двух плоскостей

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).


В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .


В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.

Может быть несколько положений прямой относительно некоторой плоскости.

Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая АВ параллельна плоскости Р , так как она параллельна прямой MN , которая лежит в этой плоскости.


Когда прямая параллельна плоскости Р , в этой плоскости через какую-либо ее точку можно провести прямую, параллельную данной прямой. Например, на рисунке 53 прямая АВ параллельна плоскости Р . Если через точку М , принадлежащую плоскости Р , провести прямую NM , параллельную АВ , то она будет лежать в плоскости Р . На том же рисунке прямая CD не параллельна плоскости Р , потому что прямая KL , которая параллельна CD и проходит через точку К на плоскости Р , не лежит в данной плоскости.

Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).


Рассмотрим построение точки пересечения плоскостей.

Через некоторую прямую I необходимо провести вспомогательную плоскость Q (проецирующую). Линия II определяется как пересечение плоскостей Р и Q . Точка К, которую и требуется построить, находится в пересечение прямых I и II. В этой точке прямая I пересекает плоскость Р .

В данном построении основным моментом решения является проведение вспомогательной плоскости Q , проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.

Прямая и плоскость перпендикулярны, если на плоскости можно найти две пересекающиеся прямые, перпендикулярные исходной прямой. В качестве подобной пары контрольных прямых легче всего рассматривать следы плоскости P h и P v (рис. 55). Это вызвано тем, что прямой угол между перпендикуляром к плоскости и следом P h дает проекцию на горизонтальную плоскость без искажения, а угол между перпендикуляром и следом Р v проецируется на фронтальную плоскость V .


Итак, признак перпендикулярности можно задать, используя прямую и плоскость на эпюре.

Прямая является перпендикулярной плоскости, когда проекции прямой перпендикулярны одноименным следам плоскости.

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.



Прямая, параллельная плоскости

Может быть несколько положений прямой относительно некоторой плоскости.

Рассмотрим признак параллельности прямой и плоскости. Прямая является параллельной плоскости, когда она параллельна любой прямой, лежащей в этой плоскости. На рисунке 53 прямая АВ параллельна плоскости Р , так как она параллельна прямой MN , которая лежит в этой плоскости.

Когда прямая параллельна плоскости Р , в этой плоскости через какую-либо ее точку можно провести прямую, параллельную данной прямой. Например, на рисунке 53 прямая АВ параллельна плоскости Р . Если через точку М , принадлежащую плоскости Р , провести прямую NM , параллельную АВ , то она будет лежать в плоскости Р . На том же рисунке прямая CD не параллельна плоскости Р , потому что прямая KL , которая параллельна CD и проходит через точку К на плоскости Р , не лежит в данной плоскости.

Прямая, пересекающая плоскость

Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Рассмотрим построение точки пересечения плоскостей.

Через некоторую прямую I необходимо провести вспомогательную плоскость Q (проецирующую). Линия II определяется как пересечение плоскостей Р и Q . Точка К, которую и требуется построить, находится в пересечение прямых I и II. В этой точке прямая I пересекает плоскость Р .

В данном построении основным моментом решения является проведение вспомогательной плоскости Q , проходящей через данную прямую. Можно провести вспомогательную плоскость общего положения. Однако показать на эпюре проецирующую плоскость, используя данную прямую, проще, чем провести плоскость общего положения. При этом через любую прямую можно провести проецирующую плоскость. На основании этого вспомогательная плоскость выбирается проецирующей.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

2024 litera-globus.ru. literaglobus - Образовательный портал.