С 7 преобразование рациональных выражений. Преобразование рациональных и иррациональных выражений

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

Тождественные преобразования выражений – это одна из содержательных линий школьного курса математики. Тождественные преобразования широко используются при решении уравнений, неравенств, систем уравнений и неравенств. Кроме того тождественные преобразования выражений способствуют развитию сообразительности, гибкости и рациональности мышления.

Предлагаемые материалы предназначены для учащихся 8 класса и включают в себя теоретические основы тождественных преобразований рациональных и иррациональных выражений, типы задач на преобразование таких выражений и текст контрольной работы .

1. Теоретические основы тождественных преобразований

Выражениями в алгебре называют записи, состоящие из чисел и букв, соединенных знаками действий.

https://pandia.ru/text/80/197/images/image002_92.gif" width="77" height="21 src=">.gif" width="20" height="21 src="> – алгебраические выражения.

В зависимости от операций различают рациональные и иррациональные выражения.

Алгебраические выражения называют рациональными, если относительно входящих в него букв а , b , с , … не выполняется никаких других операций, кроме операций сложения, умножения, вычитания, деления и возведения в целую степень.

Алгебраические выражения, содержащие операции извлечения корня из переменной или возведения переменной в рациональную степень, не являющуюся целым числом, называются иррациональными относительно этой переменной.

Тождественным преобразованием данного выражения называется замена одного выражения другим, тождественно равным ему на некотором множестве.

В основе тождественных преобразований рациональных и иррациональных выражений лежат следующие теоретические факты.

1. Свойства степеней с целым показателем:

, n ÎN; а 1=а ;

, n ÎN, а ¹0; а 0=1, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0;

, а ¹0, b ¹0;

, а ¹0, b ¹0.

2. Формулы сокращенного умножения:

где а , b , с – любые действительные числа;

Где а ¹0, х 1 и х 2 – корни уравнения .

3. Основное свойство дроби и действия над дробями:

, где b ¹0, с ¹0;

; ;

4. Определение арифметического корня и его свойства:

; , b ¹0; https://pandia.ru/text/80/197/images/image026_24.gif" width="84" height="32">; ; ,

где а , b – неотрицательные числа, n ÎN, n ³2, m ÎN, m ³2.

1. Типы упражнений на преобразование выражений

Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип : явно указано то преобразование, которое необходимо выполнить.

Например.

1. Представьте в виде многочлена .

При выполнении указанного преобразования использовали правила умножения и вычитания многочленов, формулу сокращенного умножения и приведение подобных слагаемых.

2. Разложите на множители: .

При выполнении преобразования использовали правило вынесения общего множителя за скобку и 2 формулы сокращенного умножения.

3. Сократите дробь:

.

При выполнении преобразования использовали вынесение общего множителя за скобку, переместительный и сократительный законы, 2 формулы сокращенного умножения, действия над степенями.

4. Вынесите множитель из-под знака корня, если а ³0, b ³0, с ³0: https://pandia.ru/text/80/197/images/image036_17.gif" width="432" height="27">

Использовали правила действий над корнями и определение модуля числа.

5. Избавьтесь от иррациональности в знаменателе дроби .

Второй тип упражнений – это упражнения, в которых явно указано то главное преобразование, которое необходимо выполнить. В таких упражнениях требование обычно сформулировано в одном из видов: упростить выражение, вычислить. При выполнении таких упражнений необходимо прежде всего выявить, какие и в каком порядке необходимо выполнить преобразования, чтобы выражение приняло более компактный вид, чем данное, или получился числовой результат.

Например

6. Упростите выражение:

Решение:

.

Использовали правила действий над алгебраическими дробями и формулы сокращенного умножения.

7. Упростить выражение:

.

Если а ³0, b ³0, а ¹b .

Использовали формулы сокращенного умножения, правила сложения дробей и умножения иррациональных выражений, тождество https://pandia.ru/text/80/197/images/image049_15.gif" width="203" height="29">.

Использовали операцию выделения полного квадрата, тождество https://pandia.ru/text/80/197/images/image053_11.gif" width="132 height=21" height="21">, если .

Доказательство:

Так как , то и или или или , т. е. .

Использовали условие и формулу суммы кубов.

Надо иметь в виду, что условия, связывающие переменные, могут быть заданы и в упражнениях первых двух типов.

Например.

10. Найдите , если .

Урок и презентация на тему: "Преобразование рациональных выражений. Примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К. Пособие к учебнику Макарычева Ю.Н.

Понятие о рациональном выражении

Понятие "рациональное выражение" схоже с понятием "рациональная дробь". Выражение также представляется в виде дроби. Только в числители у нас - не числа, а различного рода выражения. Чаще всего этого многочлены. Алгебраическая дробь - дробное выражение, состоящее из чисел и переменных.

При решении многих задач в младших классах после выполнения арифметических операций мы получали конкретные числовые значения, чаще всего дроби. Теперь после выполнения операций мы будем получать алгебраические дроби. Ребята, помните: чтобы получить правильный ответ, необходимо максимально упростить выражение, с которым вы работаете. Надо получить самую маленькую степень, какую возможно; одинаковые выражения в числители и знаменатели стоит сократить; с выражениями, которые можно свернуть, надо так и поступить. То есть после выполнения ряда действий мы должны получить максимально простую алгебраическую дробь.

Порядок действий с рациональными выражениями

Порядок действий при выполнении операций с рациональными выражениями такой же, как и при арифметических операциях. Сначала выполняются действия в скобках, потом – умножение и деление, возведение в степень и наконец – сложение и вычитание.

Доказать тождество – это значит показать, что при всех значениях переменных правая и левая части равны. Примеров с доказательством тождеств очень много.

К основным способам решения тождеств относятся.

  • Преобразование левой части до равенства с правой.
  • Преобразование правой части до равенства с левой.
  • Преобразование левой и правой части по отдельности, до тех пор пока не получится одинаковое выражение.
  • Из левой части вычитают правую, и в итоге должен получиться нуль.

Преобразование рациональных выражений. Примеры решения задач

Пример 1.
Докажите тождество:

$(\frac{a+5}{5a-1}+\frac{a+5}{a+1}):{\frac{a^2+5a}{1-5a}}+\frac{a^2+5}{a+1}=a-1$.

Решение.
Очевидно, нам надо преобразовать левую часть.
Сначала выполним действия в скобках:

1) $\frac{a+5}{5a-1}+\frac{a+5}{a+1}=\frac{(a+5)(a+1)+(a+5)(5a-1)}{(a+1)(5a-1)}=$
$=\frac{(a+5)(a+1+5a-1)}{(a+1)(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}$

.

Выносить общие множители надо стараться по максимуму.
2) Преобразуем выражение, на которое делим:

$\frac{a^2+5a}{1-5a}=\frac{a(a+5)}{(1-5a}=\frac{a(a+5)}{-(5a-1)}$

.
3) Выполним операцию деления:

$\frac{(a+5)(6a)}{(a+1)(5a-1)}:\frac{a(a+5)}{-(5a-1)}=\frac{(a+5)(6a)}{(a+1)(5a-1)}*\frac{-(5a-1)}{a(a+5)}=\frac{-6}{a+1}$.

4) Выполним операцию сложения:

$\frac{-6}{a+1}+\frac{a^2+5}{a+1}=\frac{a^2-1}{a+1}=\frac{(a-1)(a+1)}{a+})=a-1$.

Правая и левая части совпали. Значит, тождество доказано.
Ребята, при решении данного примера нам понадобилось знание многих формул и операций. Мы видим, что после преобразования большое выражение превратилось совсем в маленькое. При решении почти всех задач, обычно преобразования приводят к простым выражениям.

Пример 2.
Упростите выражение:

$(\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}):(\frac{a}{a+b}-\frac{a^2}{a^2-b^2})$.

Решение.
Начнем с первых скобок.

1. $\frac{a^2}{a+b}-\frac{a^3}{a^2+2ab+b^2}=\frac{a^2}{a+b}-\frac{a^3}{(a+b)^2}=\frac{a^2(a+b)-a^3}{(a+b)^2}=$
$=\frac{a^3+a^2 b-a^3}{(a+b)^2}=\frac{a^2b}{(a+b)^2}$.

2. Преобразуем вторые скобки.

$\frac{a}{a+b}-\frac{a^2}{a^2-b^2}=\frac{a}{a+b}-\frac{a^2}{(a-b)(a+b)}=\frac{a(a-b)-a^2}{(a-b)(a+b)}=$
$=\frac{a^2-ab-a^2}{(a-b)(a+b)}=\frac{-ab}{(a-b)(a+b)}$.

3. Выполним деление.

$\frac{a^2b}{(a+b)^2}:\frac{-ab}{(a-b)(a+b)}=\frac{a^2b}{(a+b)^2}*\frac{(a-b)(a+b)}{(-ab)}=$
$=-\frac{a(a-b)}{a+b}$

.

Ответ: $-\frac{a(a-b)}{a+b}$.

Пример 3.
Выполните действия:

$\frac{k-4}{k-2}:(\frac{80k}{(k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k})-\frac{6k+4}{(4-k)^2}$.


Решение.
Как всегда надо начинать со скобок.

1. $\frac{80k}{k^3-8}+\frac{2k}{k^2+2k+4}-\frac{k-16}{2-k}=\frac{80k}{(k-2)(k^2+2k+4)} +\frac{2k}{k^2+2k+4}+\frac{k-16}{k-2}=$

$=\frac{80k+2k(k-2)+(k-16)(k^2+2k+4)}{(k-2)(k^2+2k+4)}=\frac{80k+2k^2-4k+k^3+2k^2+4k-16k^2-32k-64}{(k-2)(k^2+2k+4)}=$

$=\frac{k^3-12k^2+48k-64}{(k-2)(k^2+2k+4)}=\frac{(k-4)^3}{(k-2)(k^2+2k+4)}$.

2. Теперь выполним деление.

$\frac{k-4}{k-2}:\frac{(k-4)^3}{(k-2)(k^2+2k+4)}=\frac{k-4}{k-2}*\frac{(k-2)(k^2+2k+4)}{(k-4)^3}=\frac{(k^2+2k+4)}{(k-4)^2}$.

3. Воспользуемся свойством: $(4-k)^2=(k-4)^2$.
4. Выполним операцию вычитания.

$\frac{(k^2+2k+4)}{(k-4)^2}-\frac{6k+4}{(k-4)^2}=\frac{k^2-4k}{(k-4)^2}=\frac{k(k-4)}{(k-4)^2}=\frac{k}{k-4}$.


Как мы раньше говорили, упрощать дробь надо максимально.
Ответ: $\frac{k}{k-4}$.

Задачи для самостоятельного решения

1. Докажите тождество:

$\frac{b^2-14}{b-4}-(\frac{3-b}{7b-4}+\frac{b-3}{b-4})*\frac{4-7b}{9b-3b^2}=b+4$.


2. Упростите выражение:

$\frac{4(z+4)^2}{z-2}*(\frac{z}{2z-4}-\frac{z^2+4}{2z^2-8}-\frac{2}{z^2+2z})$.


3. Выполните действия:

$(\frac{a-b}{a^2+2ab+b^2}-\frac{2a}{(a-b)(a+b)}+\frac{a-b}{(a-b)^2})*\frac{a^4-b^4}{8ab^2}+\frac{2b^2}{a^2-b^2}$.

Преобразование рациональных выражений

В этом уроке поработаем с рациональными выражениями. На конкретных примерах рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Рациональное выражение - алгебраическое выражение, составленное из чисел, буквенных переменных, арифметических операций, возведения в натуральную степень, и знаков последовательности этих действий (скобок). Вместе со словосочетанием «рациональное выражение» в алгебре используют иногда термины «целое» или «дробное».

Например, выражения

являются и рациональными, и целыми.

Выражения

являются и рациональными, и дробными, т.к. в знаменателе находится выражение с переменной.

Не надо забывать, что дробь теряет смысл, если знаменатель обращается в нуль.

Основной целью урока будет приобретение опыта при решении задач на упрощение рациональных выражений.

Упрощение рациональных выражений — это применение тождественных преобразований, с целью упростить запись выражения (сделать короче и удобнее для дальнейшей работы).

Для преобразования рациональных выражений нам потребуются правила сложения (вычитания), умножения, деления и возведения в степень алгебраических дробей, все эти действия совершаются по тем же правилам, что и действия с обыкновенными дробями:

А также формулы сокращенного умножения:

При решении примеров по преобразованию рациональных выражений следует соблюдать следующий порядок действий: сначала выполняются действия в скобках, затем произведение/деление (либо возведение в степень), а затем действия сложения/вычитания.

Итак, рассмотрим пример 1:

необходимо упростить выражение

Во-первых, выполняем действия в скобках.

Приводим алгебраические дроби к общему знаменателю и осуществляем сложение (вычитание) дробей с одинаковыми знаменателями по правилам, записанным выше.

Используя формулу сокращенного выражения (а именно квадрат разности), полученное выражение принимает вид:

Во-вторых, по правилам умножения алгебраических дробей перемножаем числители и отдельно знаменатели:

А затем сокращаем полученное выражение:

В результате проведенных преобразований получаем простое выражение

Рассмотрим более сложный пример 2 преобразования рациональных выражений: необходимо доказать тождество:

Доказать тождество - это установить, что при всех допустимых значениях переменных его левая и правая части равны.

Доказательство:

Чтобы доказать данное тождество, необходимо преобразовать выражение в левой части. Для этого следует соблюдать порядок действий, изложенный выше: в первую очередь выполняются действия в скобках, затем умножение, а затем уже сложение.

Итак, действие 1:

выполнить сложение/вычитание выражения в скобке.

Для этого раскладываем на множители выражения в знаменателях дробей и приводим данные дроби к общему знаменателю.

Так в знаменателе первой дроби выносим за скобку 3, в знаменателе второй - выносим знак минус и по формуле сокращенного умножения раскладываем на два множителя, а в знаменателе третьей дроби выносим за скобку x.

Общим знаменателем этих трех дробей будет выражение

Действие 2:

выполнить умножение дроби

Для этого прежде следует разложить на множители числитель первой дроби и возвести эту дробь в степень 2.

А при умножении дробей выполнить соответствующее сокращение.

Действие 3:

Суммируем первую дробь исходного выражения и получившуюся дробь

Для этого сначала разложим на множители числитель и знаменатель первой дроби и сократим:

Теперь остается только сложить полученные алгебраические дроби с разными знаменателями:

Таким образом, в результате 3-х действий и упрощения левой части тождества мы получили выражение из правой его части, а следовательно, доказали это тождество. Однако напомним, что тождество справедливо лишь для допустимых значений переменной x. Таковыми в данном примере являются любые значения x, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые значения x, кроме тех, при которых выполняется хотя бы одно из равенств:

Недопустимыми будут значения:

Итак, на конкретных примерах мы рассмотрели решение задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.:Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

>>Математика:Преобразование рациональных выражений

Преобразование рациональных выражений

Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях . Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений.

А, скажем, к дроби можно приклеить только один ярлык - рациональное число.

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения - числа, переменные, степени («цифры»); второй этап их изучения - одночлены («натуральные числа»); третий этап их изучения - многочлены («целые числа»); четвертый этап их изучения - алгебраические дроби
(«рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени - частные случаи одночленов; одночлены - частные случаи многочленов; многочлены - частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен - целое выражение , алгебраическая дробь - дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение - рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью - это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень , после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение.

Пример. Доказать тождество

Решение.
Доказать тождество - это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами:

1) выполняют преобразования левой части и получают в итоге правую часть;

2) выполняют преобразования правой части и получают в итоге левую часть;

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение;

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать - зависит от конкретного вида тождества , которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание).

Выполним преобразования по действиям, опираясь на те правила, алгоритмы , что были выработаны в предыдущих параграфах.

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 8 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
2024 litera-globus.ru. literaglobus - Образовательный портал.