Что такое сила Кориолиса? Центробежная сила инерции. Сила Кориолиса

Земля - дважды неинерциальная система отсчета, поскольку она движется вокруг Солнца и вращается вокруг своей оси. На тела неподвижные, как было показано в 5.2, действует лишь центробежная сила. В 1829 г. французский физик Г. Кориолис 18 показал, что на движущееся тело действует еще одна сила инерции. Ее называют силой Кориолиса. Эта сила всегда перпендикулярна оси вращения и направлению скорости о.

Появление кориолисовой силы можно обнаружить на следующем примере. Возьмем горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 5.3).

Рис. 5.3.

Запустим в направлении от О к А шарик со скоростью х>. Если диск не вращается, шарик должен катиться вдоль ОА. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться по кривой ОВ ч причем его скорость относительно диска быстро изменяет свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила?. е, перпендикулярная направлению движения шарика.

Сила Кориолиса не является «настоящей» в смысле механики Ньютона. При рассмотрении движений относительно инерциальной системы отсчета такая сила вообще не существует. Она вводится искусствснно при рассмотрении движений в системах отсчета, вращающихся относительно инерциальных, чтобы придать уравнениям движения в таких системах формально такой же вид, что и в инерциальных системах отсчета.

Чтобы заставить шарик катиться вдоль О А , нужно сделать направляющую, выполненную в виде ребра. При качении шарика направляющее ребро действует на него с некоторой силой. Относительно вращающейся системы (диска) шарик движется с постоянной но направлению скоростью. Это можно объяснить тем, что эта сила уравновешивается приложенной к шарику силой инерции

здесь - сила Кориолиса , также являющаяся силой инерции; 1

(О - угловая скорость вращения диска.

Сила Кориолиса вызывает кориолисово ускорение. Выражение для этого ускорения имеет вид

Ускорение направлено перпендикулярно векторам со и и и максимально, если относительная скорость точки о ортогональна угловой скорости со вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами со и о равен нулю или п либо если хотя бы один из этих векторов равен нулю.

Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу.

Таким образом, F. всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета.

Влияние кориолисовых сил необходимо учитывать в ряде случаев при движении тел относительно земной поверхности. Например, при свободном падении тел на них действует кориолисова сила, обусловливающая отклонение к востоку от линии отвеса. Эта сила максимальна на экваторе и обращается в нуль на полюсах. Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силами инерции. Например, при выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу - в южном.

” Вывод формулы для расчета силы Кориолиса можно посмотреть на примере задачи 5.1.

При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в восточном направлении.

Возникновение некоторых циклонов в атмосфере Земли происходит в результате действия силы Кориолиса. В северном полушарии вес устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению.

Сила Кориолиса действует на тело, движущееся вдоль меридиана , в северном полушарии вправо и в южном влево (рис. 5.4).

Рис. 5.4.

Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей.

Силы Кориолиса проявляются и при качаниях маятника.

В 1851 г. французский физик Ж. Фуко 19 установил в Пантеоне Парижа маятник массой 28 кг на тросе длиной 67 м (маятник Фуко). Такой же маятник массой 54 кг на тросе длиной 98 м недавно, к сожалению, был демонтирован в Исаакиевском соборе Санкт-Петербурга в связи с передачей собора в собственность церкви.

Для простоты предположим, что маятник расположен на полюсе (рис. 5.5). На северном полюсе сила Кориолиса будет направлена вправо по ходу маятника. В итоге траектория движения маятника будет иметь вид розетки.

Рис. 5.5.

Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так: плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот.

Таким образом, вращение плоскости качаний маятника Фуко дает непосредственное доказательство вращения Земли вокруг своей оси.

Если тело удаляется от оси вращения, то сила F K направлена противоположно вращению и замедляет его.

Если тело приближается к оси вращения, то F K направлена в сторону вращения.

С учетом всех сил инерции уравнение Ньютона для неинерциаль- ной системы отсчета (5.1.2) примет вид

где F bi = -та - сила инерции, обусловленная поступательным движением неинерциальной системы отсчета;

* г 1 гг

К». = та п и F fe =2w - две силы инерции, обусловленные вращательным движением системы отсчета;

а - ускорение тела относительно неинерциальнои системы отсчета.

Кориолиса сила

При вращении диска, более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Если мы хотим переместить некоторое тело вдоль радиуса, так, чтобы оно оставалось на радиусе (синяя стрелка из положения «А» в положение «Б»), то нам придётся увеличить скорость тела, то есть, придать ему ускорение. Если наша система отсчёта вращается вместе с диском, то мы ощутим, что тело «не хочет» оставаться на радиусе, а «норовит» уйти влево - это и есть сила Кориолиса.

Движение шарика по поверхности вращающейся тарелки.

Си́ла Кориоли́са (по имени французского учёного Гюстава Гаспара Кориолиса , впервые его описавшего) - одна из сил инерции , существующая в неинерциальной (вращающейся) системе отсчёта из-за вращения и законов инерции , проявляющаяся при движении в направлении под углом к оси вращения. Ускорение Кориолиса было получено Кориолисом в 1833 г., Гауссом в 1803 г. и Эйлером в 1765 г.

Причина появления силы Кориолиса - в кориолисовом (поворотном) ускорении. Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной F = m a , где a - кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой противоположной направленности. F K = − m a . Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с другой силой инерции - центробежной силой , которая направлена по радиусу вращающейся окружности .

Вопреки расхожему мнению, маловероятно, что сила Кориолиса полностью определяет направление закручивания воды в водопроводе - например, при сливе в раковине. Хотя в разных полушариях она действительно стремится закручивать водяную воронку в разных направлениях, при сливе возникают и побочные потоки, зависящие от формы раковины и конфигурации канализационной системы. По абсолютной величине создаваемые этими потоками силы превосходят силу Кориолиса, поэтому направление вращения воронки как в Северном, так и в Южном полушарии может быть как по часовой стрелке, так и против неё.

См. также

Wikimedia Foundation . 2010 .

Большая политехническая энциклопедия


  • Сила Кориолиса в природе

    Самый обычный пример использования силы Кориолиса - это эффект ускорения кручения танцоров. Чтоб ускорить свое вращение, человек может начать вертеться с обширно разведёнными в стороны руками, а потом - уже в процессе - резко придавить руки к туловищу, что вызовет повышение радиальный скорости (согласно закону сохранения момента импульса). Эффект силы Кориолиса проявится в том, что для подобного движения руками придётся прикладывать усилия не только лишь по направлению к телу, да и в направлении по вращению. При всем этом появляется чувство, что руки отталкиваются от чего-то, при всем этом ещё больше ускоряясь.

    Сила Кориолиса также проявляется, к примеру, в работе маятника Фуко. Не считая того, так как Земля крутится, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса ориентирована на право от движения, потому правые берега рек в Северном полушарии более крутые - их подмывает вода под действием этой силы (см. Закон Бэра). В Южном полушарии всё происходит напротив. Сила Кориолиса несет ответственность также и за вращение циклонов и антициклонов.

    Вопреки расхожему воззрению, маловероятно, что сила Кориолиса целиком определяет направление закручивания воды в водопроводе - к примеру, при сливе в раковине. Хотя в различных полушариях она вправду стремится закручивать водяную воронку в различных направлениях, при сливе появляются и побочные потоки, зависящие от формы раковины и конфигурации канализационной системы. По абсолютной величине создаваемые этими потоками силы превосходят силу Кориолиса, потому направление вращения воронки как в Северном, так и в Южном полушарии может быть как по часовой стрелке, так и против неё.

    Сила Кориолиса (по имени французского учёного Г. Кориолиса, в первый раз его описавшего) - одна из сил инерции, существующая в неинерциальной (вращающейся) системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения. Ускорение Кориолиса было получено Г.Кориолисом в 1833г., К.Гаусом в 1803г. и Л.Эйлером в 1765 г.

    Причина возникновения силы Кориолиса - в кориолисовом (поворотном) ускорении. Для того, чтоб тело двигалось с кориолисовым ускорением, нужно приложение силы к телу, равной F = ma, где a - кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой обратной направленности. FK = - ma. Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с иной силой инерции - центробежной силой, которая ориентирована по радиусу вращающейся окружности.

    В инерциальных системах отсчёта действует закон инерции, другими словами, каждое тело стремится двигаться по прямой и с неизменной скоростью. В том случае разглядеть движение тела, равномерное повдоль некого вращающегося радиуса и направленное от центра, то станет ясно, что чтоб оно осуществилось, требуется придавать телу ускорение, потому что чем далее от центра, тем должна быть больше касательная скорость вращения. Это означает, что исходя из убеждений вращающейся системы отсчёта, некоторая сила будет пробовать сдвинуть тело с радиуса.

    В том случае вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса на лево. В том случае вращение происходит против часовой стрелки - то на право.

    Итог действия силы Кориолиса будет наибольшим при продольном перемещении объекта по отношению к вращению. Как следует, на Земле это будет при движении по меридиану, при всем этом тело отклоняется на право при движении с севера на юг и на лево при движении с юга на север. Для этого явления имеются две предпосылки: 1-ая, вращение Земли на восток; и 2-ая - зависимость от географической широты тангенциальной скорости точки на поверхности Земли (эта скорость равна нулю на полюсах и добивается собственного наибольшего значения на экваторе).

    Следовательно, при выстреле пушки на север из хоть какой точки на экваторе, снаряд падает восточнее собственного сначало данного направления. Это отклонение разъясняется тем фактом, что на экваторе снаряд двигается к востоку резвее, чем в хоть какой точке севернее. Подобно, в том случае стрелять со стороны северного полюса, то снаряд должен падать правее по отношению к собственной прицельной точке. Потому что в данном случае за время полета цель успевает переместиться к востоку далее из-за собственной большей, чем у снаряда, восточной скорости. Подобные смещения происходят при любом выстреле, в том случае только начальная скорость снаряда имеет ненулевую проекцию на направление север - юг.

    Первоисточники:

  • ru.wikipedia.org - сила Кориолиса, математическое определение, сила Кориолиса в природе и т.д.;
  • astrogalaxy1.narod.ru - о силе Кориолиса;
  • elementy.ru - эффект Кориолиса.
  • Эффект от силы Кориолиса вступает в заметную силу когда производятся стрельба на очень дальние дистанции как представленная на картинке. Движение Земли вокруг своей оси двигает цель во время полета пули.

    Когда вы находитесь на стрельбище, земля на которой вы стоите, кажется стабильной. Но на самом деле это большая сфера, летящая в космосе и одновременно вращающаяся по своей оси, с одним полным оборотом в 24 часа. Вращение земли может создавать проблемы для стрелков на сверхдальние дистанции. Во время продолжительного полета пули, вращение планеты вызывает наглядное отклонение цели от траектории пули при стрельбе на очень дальние дистанции. Это называется корреляционный эффект или эффект корреляции в баллистике.

    Брайен Литц (Bryan Litz) из Прикладной Баллистики (Applied Ballistics) выпустил небольшое видео где он объясняет эффект силы Кориолиса. Брайан подмечает что этот эффект " очень незначителен. Стрелки любят возвышать его силу, так как он кажется очень таинственным. " В большинстве случаев при стрельбе до ~ 1000 м., сила Кориолиса не важна в учете. Если пользоваться Американской системой ввода поправок (1/4 MOA угловой минута = ~1" дюйм на 100 ярдов) на 1000 ярдов (914,4 м.) эффект можно будет скорректировать на прицеле одним щелчком (для большинства патронов). Даже после отметки в 1000 ярдов в условиях повышенного ветра, эффект силы Кориолиса может быть " потерян в общем шуме ". Но в очень благоприятных условиях стрельбы без ветра на дальние дистанции, Брайен утверждает что можно получить преимущество в точности используя баллистические решения с учетом корреляционного эффекта.

    Браен продолжает: " Эффект силы Кориолиса...связан с вращение Земли. Вы по сути стреляете из одной точки в другую на вращающейся сфере, в инерционной системе координат. Последствия будут такие что если время полета пули будет достаточно продолжительным, пуля будет сносится от своей предполагаемой цели. Количество этого сноса очень мало - оно зависит от географической широты и направления стрельбы относительно планеты. "

    Эффект силы Кориолиса очень трудно уловим. Со средним баллистическим коэффициентом и скоростью, у вас будет свободная дистанция до 1000 ярдов, до того как можно будет сделать поправку в один щелчок на прицеле. Брайан говорит: " эффект корреляции это НЕ то о чем следует думать при стрельбе по движущейся цели, это НЕ то о чем следует думать при стрельбе с сильным ветром, так как есть условия которые будут иметь более очевидное влияние, а эффект силы Кориолиса будет отвлекать вас от них. "

    " Где действительно можно задуматься об использовании данного эффекта, использовать его на постоянной основе и он будет влиять на ваши показатели - это при стрельбе на сверхдальние дистанции по относительно малым целям в условиях малого ветра. Когда вы знаете скорость пули и баллистический коэффициент очень хорошо и есть безупречные условия, тогда вы заметите влияние силы Кориолиса. Вы получите больше отдачи в вашей деятельности, если будете учитывать эту силу только в вышеприведенных случаях. Но в большинстве случаев практической стрельбы на дальние дистанции, сила Кориолиса НЕ так важна. Что действительно важно это понять ваши приоритеты в стрельбе и учет их в процессе."

    29. Сила Кориолиса

    Самая ужасная сила, которой гравитоны не нужны

    Сначала – что известно научному миру о силе Кориолиса?

    При вращении диска более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Переместить некоторое тело вдоль радиуса так, чтобы оно оставалось на радиусе (синяя стрелка из положения “А” в положение “Б”) можно, увеличив скорость тела, то есть придав ему ускорение. Если система отсчёта вращается вместе с диском, то видно, что тело “не хочет” оставаться на радиусе, а “пытается” уйти влево – это и есть сила Кориолиса.

    Траектории шарика при движении по поверхности вращающейся тарелки в разных системах отсчета (вверху – в инерциальной, внизу – в неинерциальной).

    Сила Кориолиса – одна из сил инерции , существующая в неинерциальной системе отсчёта из-за вращения и законов инерции , проявляющаяся при движении в направлении под углом к оси вращения. Названа по имени французского учёного Гюстава Гаспара Кориолиса , впервые её описавшего. Ускорение Кориолиса было получено Кориолисом в 1833 году, Гауссом в 1803 году и Эйлером в 1765 году .

    Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции , то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью . Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение , так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.

    Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной F = ma , где a — кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой противоположной направленности. F K = — ma .

    Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с другой силой инерции — центробежной силой , которая направлена по радиусу вращающейся окружности . Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.

    Правило Жуковского

    Ускорение кориолиса можно получить, спроецировав вектор скорости материальной точки в неинерциальной системе отсчёта на плоскость перпендикулярную вектору угловой скорости неинерциальной системы отсчёта , увеличив полученную проекцию в раз и повернув её на 90 градусов в направлении переносного вращения. Н. Е. Жуковским была предложена удобная для практического использования словесная формулировка определения силы Кориолиса

    Дополнения:

    Правило буравчика

    Прямой провод с током. Ток (I), протекая через провод, создаёт магнитное поле (B) вокруг провода. Правило буравчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости , характеризующей скорость вращения тела, а также вектора магнитной индукции B или для определения направления индукционного тока . Правило правой руки Правило буравчика : “Если направление поступательного движения буравчика (винта ) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции “.

    Определяет направление индукционного тока в проводнике, движущемся в магнитном поле

    Правило правой руки : “Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то 4 вытянутых пальца укажут направление индукционного тока”.

    Для соленоида оно формулируется так: “Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида”.

    Правило левой руки

    Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: “Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90® большой палец покажет направление действующей силы Лоренца или Ампера”.

    МАГНИТНОЕ ПОЛЕ

    СВОЙСТВА (стационарного) МАГНИТНОГО ПОЛЯ

    Постоянное (или стационарное) магнитное поле – это магнитное поле, неизменяющееся во времени.

    1. Магнитное поле создается движущимися заряженными частицами и телами, проводниками с током, постоянными магнитами.

    2. Магнитное поле действует на движущиеся заряженные частицы и тела, на проводники с током, на постоянные магниты, на рамку с током.

    3. Магнитное поле вихревое , т.е. не имеет источника.

    МАГНИТНЫЕ СИЛЫ - это силы, с которыми проводники с током действуют друг на друга.

    ………………

    МАГНИТНАЯ ИНДУКЦИЯ

    Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

    ЛИНИИ МАГНИТНОЙ ИНДУКЦИИ - это линии, касательными к которой в любой её точке является вектор магнитной индукции.

    Однородное магнитное поле – это магнитное поле, у которого в любой его точке вектор магнитной индукции неизменен по величине и направлению; наблюдается между пластинами плоского конденсатора, внутри соленоида (если его диаметр много меньше его длины) или внутри полосового магнита.

    СВОЙСТВА ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ

    – имеют направление;

    – непрерывны;

    – замкнуты (т.е. магнитное поле является вихревым);

    – не пересекаются;

    – по их густоте судят о величине магнитной индукции.

    Правило буравчика (в основном для прямого проводника с током):

    Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока. Правило правой руки (в основном для определения направления магнитных линий внутри соленоида): Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
    Существуют другие возможные варианты применения правил буравчика и правой руки.
    СИЛА АМПЕРА - это сила, с которой магнитное поле действует на проводник с током. Модуль силы Ампера равен произведению силы тока в проводнике на модуль вектора магнитной индуции, длину проводника и синус угла между вектором магнитной индукции и направлением тока в проводнике. Сила Ампера максимальна, если вектор магнитной индукции перпендикулярен проводнику. Если вектор магнитной индукции параллелен проводнику, то магнитное поле не оказывает никакого действия на проводник с током, т.е. сила Ампера равна нулю. Направление силы Ампера определяется по правилу левой руки:

    Если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а 4 вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующий на проводник с током.

    Так, в магнитном поле прямого проводника с током (оно неоднородно) рамка с током ориентируется вдоль радиуса магнитной линии и притягивается или отталкивается от прямого проводника с током в зависимости от направления токов.

    Направление силы Кориолиса на вращающейся Земле. Центробежная сила , действующая на тело массы m , по модулю равна F pr = mb 2 r , где b = омега– угловая скорость вращения и r — расстояние от оси вращения. Вектор этой силы лежит в плоскости оси вращения и направлен перпендикулярно от неё. Величина силы Кориолиса , действующей на частицу, движущуюся со скоростью относительно данной вращающейся системы отсчета, определяется выражением , где альфа — угол между векторами скорости частицы и угловой скорости системы отсчета. Вектор этой силы направлен перпендикулярно обоим векторам и вправо от скорости тела (определяется по правилу буравчика ).

    Эффекты силы Кориолиса: лабораторные эксперименты

    Маятник Фуко на северном полюсе. Ось вращения Земли лежит в плоскости колебаний маятника. Маятник Фуко . Эксперимент, наглядно демонстрирующий вращение Земли, поставил в 1851 году французский физик Леон Фуко . Его смысл заключается в том, что плоскость колебаний математического маятника неизменна относительно инерциальной системы отсчета, в данном случае относительно неподвижных звезд. Таким образом, в системе отсчета, связанной с Землей, плоскость колебаний маятника должна поворачиваться. С точки зрения неинерциальной системы отсчета, связанной с Землёй, плоскость колебаний маятника Фуко поворачивается под действием силы Кориолиса. Наиболее отчетливо этот эффект должен быть выражен на полюсах, где период полного поворота плоскости маятника равен периоду вращения Земли вокруг оси (звёздным суткам). В общем случае, период обратно пропорционален синусу географической широты, на экваторе плоскость колебаний маятника неизменна.

    В настоящее время маятник Фуко с успехом демонстрируется в ряде научных музеев и планетариев, в частности, в планетарии Санкт-Петербурга , планетарии Волгограда.

    Существует ряд других опытов с маятниками, используемых для доказательства вращения Земли. Например, в опыте Браве (1851 г.) использовался конический маятник . Вращение Земли доказывалось тем, что периоды колебаний по и против часовой стрелки различались, поскольку сила Кориолиса в этих двух случаях имела разный знак. В 1853 г. Гаусс предложил использовать не математический маятник, как у Фуко , а физический , что позволило бы уменьшить размеры экспериментальной установки и увеличить точность эксперимента. Эту идею реализовал Камерлинг-Оннес в 1879 г.

    Гироскоп – вращающееся тело со значительным моментом инерции сохраняет момент импульса, если нет сильных возмущений. Фуко, которому надоело объяснять, что происходит с маятником Фуко не на полюсе, разработал другую демонстрацию: подвешенный гироскоп сохранял ориентацию, а значит медленно поворачивался относительно наблюдателя.

    Отклонение снарядов при орудийной стрельбе. Другим наблюдаемым проявлением силы Кориолиса является отклонение траекторий снарядов (в северном полушарии вправо, в южном — влево), выстреливаемых в горизонтальном направлении. С точки зрения инерциальной системы отсчета, для снарядов, выстреливаемых вдоль меридиана , это связано с зависимостью линейной скорости вращения Земли от географической широты: при движении от экватора к полюсу снаряд сохраняет горизонтельную компоненту скорости неизменной, в то время как линейная скорость вращения точек земной поверхности уменьшается, что приводит к смещению снаряда от меридиана в сторону вращения Земли. Если выстрел был произведен параллельно экватору, то смещение снаряда от параллели связано с тем, что траектория снаряда лежит в одной плоскости с центром Земли, в то время как точки земной поверхности движутся в плоскости, перпендикулярной оси вращения Земли.

    Отклонение свободно падающих тел от вертикали. Если скорость движения тела имеет большую вертикальную составляющую, сила Кориолиса направлена к востоку, что приводит к соответствующему отклонению траектории тела, свободно падающего (без начальной скорости) с высокой башни. При рассмотрении в инерциальной системе отсчета эффект объясняется тем, что вершина башни относительно центра Земли движется быстрее, чем основание, благодаря чему траектория тела оказывается узкой параболой и тело слегка опережает основание башни.

    Этот эффект был предсказан Ньютоном в 1679 г. Ввиду сложности проведения соответствующих экспериментов эффект удалось подтвердить только в конце XVIII — первой половине XIX века (Гульельмини, 1791; Бенценберг, 1802; Райх, 1831).

    Австрийский астроном Иоганн Хаген (1902 г.) осуществил эксперимент, являющийся модификацией этого опыта, где вместо свободно падающих грузов использовалась машина Атвуда . Это позволило снизить ускорение падения, что привело к уменьшению размеров экспериментальной установки и повышению точности измерений.

    Эффект Этвёша. Ни низких широтах сила Кориолиса при движении по земной поверхности направлена в вертикальном направлении и её действие приводит к увеличению или уменьшению ускорения свободного падения, в зависимости от того, движется ли тело на запад или восток. Этот эффект назван эффектом Этвёша в честь венгерского физика Роланда Этвёша , экспериментально обнаружившего его в начале XX века.

    Опыты, использующие закон сохранения момент импульса. Некоторые эксперименты основаны на законе сохранения момента импульса : в инерциальной системе отсчёта величина момента импульса (равная произведению момента инерции на угловую скорость вращения) под действием внутренних сил не меняется. Если в некоторый начальный момент времени установка неподвижна относительно Земли, то скорость её вращения относительно инерциальной системы отсчета равна угловой скорости вращения Земли. Если изменить момент инерции системы, то должна измениться угловая скорость её вращения, то есть начнётся вращение относительно Земли. В неинерциальной системе отсчёта, связанной с Землёй, вращение возникает в результате действия силы Кориолиса. Эта идея была предложена французским учёным Луи Пуансо в 1851 г.

    Первый такой эксперимент был поставлен Хагеном в 1910 г.: два груза на гладкой перекладине были установлены неподвижно относительно поверхности Земли. Затем расстояние между грузами было уменьшено. В результате установка пришла во вращение. Ещё более наглядный опыт поставил немецкий учёный Ханс Букка (Hans Bucka) в 1949 г. Стержень длиной примерно 1,5 метра был установлен перпендикулярно прямоугольной рамке. Первоначально стержень был горизонтален, установка была неподвижной относительно Земли. Затем стержень был приведен в вертикальное положение, что привело к изменения момента инерции установке примерно в 10 4 раз и её быстрому вращению с угловой скоростью, в 10 4 раз превышающей скорость вращения Земли.

    Воронка в ванне. Поскольку сила Кориолиса очень слаба, она оказывает пренебрежимо малое влияние на направление закручивания воды при сливе в раковине или ванне, поэтому в общем случае направление вращения в воронке не связано с вращением Земли. Однако в тщательно контролируемых экспериментах можно отделить действие силы Кориолиса от других факторов: в северном полушарии воронка будет закручена против часовой стрелки, в южном — наоборот (всё наоборот).

    Эффекты силы Кориолиса: явления в окружающей природе

    Закон Бэра. Как впервые отметил петербургский академик Карл Бэр в 1857 году, реки размывают в северном полушарии правый берег (в южном полушарии — левый), который вследствие этого оказывается более крутым (закон Бэра ). Объяснение эффекта аналогично объяснению отклонения снарядов при стрельбе в горизонтальном направлении: под действием силы Кориолиса вода сильнее ударяется в правый берег, что приводит к его размытию, и, наоборот, отступает от левого берега.

    Циклон над юго-восточным побережьем Исландии (вид из космоса). Ветры: пассаты, циклоны, антициклоны. С наличием силы Кориолиса, направленной в северном полушарии вправо и в южном влево, связаны также атмосферные явления: пассаты, циклоны и антициклоны. Явление пассатов вызывается неодинаковостью нагрева нижних слоёв земной атмосферы в приэкваториальной полосе и в средних широтах, приводящему к течению воздуха вдоль меридиана на юг или север в северном и южном полушариях, соответственно. Действие силы Кориолиса приводит к отклонению потоков воздуха: в северном полушарии — в сторону северо-востока (северо-восточный пассат), в южном полушарии — на юго-восток (юго-восточный пассат).

    Циклоном называется атмосферный вихрь с пониженным давлением воздуха в центре. Массы воздуха, стремясь к центру циклона, под действием силы Кориолиса закручиваются против часовой стрелки в северном полушарии и по часовой стрелке в южном. Аналогично, в антициклоне , где в центре имеется максимум давления, наличие силы Кориолиса приводит к вихревому движению по часовой стрелке в северном полушарии и против часовой стрелки в южном. В стационарном состоянии направление движения ветра в циклоне или антициклоне таково, что сила Кориолиса уравновешивает градиент давления между центром и периферией вихря (геострофический ветер ).

    Оптические эксперименты

    В основе ряда опытов, демонстрирующих вращение Земли, используется эффект Саньяка : если кольцевой интерферометр совершает вращательное движение, то вследствие релятивистских эффектов полосы смещаются на угол

    где A — площадь кольца, c — скорость света, омега — угловая скорость вращения. Для демонстрации вращения Земли этот эффект был использован американским физиком Майкельсоном в серии экспериментов, поставленных в 1923–1925 гг. В современных экспериментах, использующих эффект Саньяка, вращение Земли необходимо учитывать для калибровки кольцевых интерферометров.

    Правило буравчика в жизни дельфинов

    Однако маловероятно, что дельфины способны ощущать эту силу в таком незначительном масштабе, – пишет MIGNews. По другой версии Менджера, дело в том, что животные плавают одном направлении, чтобы держаться группой во время относительной уязвимости в часы полусна. “Когда дельфины бодрствуют, они используют свист, чтобы держаться вместе, – объясняет ученый. – Но во время сна они не хотят шуметь, потому что бояться привлечь внимание”. Но Менджер не знает, почему выбор направления изменяется в связи с полушарием: “Это выше моих сил”, – признает исследователь.

    Мнение дилетанта

    Итак, имеем сборку:

    1. Сила Кориолиса – одна из

    5. МАГНИТНОЕ ПОЛЕ - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

    6. МАГНИТНАЯ ИНДУКЦИЯ - это силовая характеристика магнитного поля.

    7. НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОЙ ИНДУКЦИИ - определяется по правилу буравчика или по правилу правой руки.

    9. Отклонение свободно падающих тел от вертикали.

    10. Воронка в ванне

    11. Эффект правого берега.

    12. Дельфины.

    На экваторе провели эксперимент с водой. Севернее экватора при сливе вода вращалась по часовой стрелке, южнее экватора – против часовой стрелки. То, что правый берег выше левого – это вода затаскивает скальную породу наверх.

    Сила Кориолиса никакого отношения к вращению Земли не имеет!

    Подробное описание трубок связи со спутниками, Луной и Солнцем приведены в монографии “Холодный ядерный синтез”.

    Там же эффекты, возникающие при снижении потенциалов отдельных частот в трубках связи.

    С 2007 года наблюдались эффекты:

    Вращение воды при сливе как по часовой, так и против часовой стрелок, иногда слив производился без вращения.

    Дельфины выбрасывались на берег.

    Отсутствовала трансформация тока (на входе всё есть, на выходе ничего нет).

    При трансформации выходная мощность значительно превосходила входную.

    Сгорание трансформаторных подстанций.

    Сбои систем связи.

    Не работало правило буравчика при магнитной индукции.

    Пропал Гольфстрим.

    Планируется:

    Останов океанских течений.

    Останов рек, впадающих в Чёрное море.

    Останов рек, впадающих в Аральское море.

    Останов Енисея.

    Ликвидация трубок связи приведёт к смещению спутников планет на круговые орбиты вокруг Солнца, радиус орбит будет меньше радиуса орбиты Меркурия.

    Снятие трубки связи с Солнцем – гашение короны.

    Снятие трубки связи с Луной – ликвидация размножения “золотого миллиарда” и “золотого миллиона”, при этом Луна “отъезжает” от Земли на 1200000 км.

    2024 litera-globus.ru. literaglobus - Образовательный портал.