Центр масс и уравнение его движения. Третий закон Ньютона

В любой системе материальных точек, а следовательно, и системе тел имеется одна замечательная точка С, которая называется центром масс илицентром инерции системы. Ее положение определяется радиусом-вектором r c :

Для центра масс справедливо следующее утверждение: при движении любой системы частиц ее центр масс движется так, как если бы вся масса системы была сосредоточена в этой точке и к ней были бы приложены всевнешние силы, действующие на систему. По форме уравнение движения центра масс совпадает со вторым законом Ньютона:

где - ускорение центра масс.

Уравнение динамики вращательного движения

При вращательном движении твердого тела аналогом второго закона Ньютона является основное уравнение динамики вращательного движения , которое имеет вид:

где e - угловое ускорение, М - суммарный момент сил относительно оси вращения. Если момент инерции тела изменяется в процессе движения, то нужно применять этот закон в следующей форме:

где - момент импульса твердого тела.

Любое движение твердого тела может быть представлено как наложение двух основных видов движения - поступательного и вращательного. Например, качение шара можно рассматривать как перемещение с ускорением, равным ускорению центра масс, и вращение относительно оси, проходящей через центр масс. Каждое движение подчиняется, как показано в таблице 5, соответствующему закону.

Законы динамики в неинерциальных системах отсчета.

Силы инерции

Системы отсчета, движущиеся с ускорением относительно инерциальных систем, называются неинерциальными (НИСО) , и в них не выполняются рассмотренные выше законы динамики: второй закон Ньютона, уравнение движения центра масс, уравнение динамики вращательного движения. Однако их можно сохранить и для неинерциальных систем, если кроме обычных сил взаимодействия F ввести еще “силы” особой природы F ин , называемые силами инерции . Их введение обусловлено ускорением движения неинерциальной системы отсчета относительно инерциальной.

Законы динамики Таблица 5

Физическая ситуация Применяемые законы
Прямолинейное движение материальной точки, поступательное движение твердого тела Второй закон Ньютона
Движение материальной точки по окружности или другой криволинейной траектории Второй закон Ньютона
Вращение твердого тела вокруг неподвижной оси Основной закон динамики вращательного движения
Сложное движение твердого тела Уравнение движения центра масс и уравнение динамики вращательного движения

В НИСО законы динамики примут вид:

второй закон Ньютона + ;

уравнение движения центра масс + ;

уравнение динамики вращательного движения + .

Существует два основных типа неинерциальных систем. Обозначим символом К инерциальную систему отсчета, а - неинерциальную .

1. движется относительно К с постоянным ускорением . В этом случае в уравнениях динамики следует ввести силу инерции , равную = - m a c . Точкой приложения этой силы считать центр масс.

Когда мы имеем дело с системой частиц, удобно найти такую точку - центр масс, которая характеризовала бы положение и движение этой системы как целого. В системе из двух одинаковых частиц такая точка С, очевидно, лежит посередине между ними (рис. 110а). Это ясно из соображений симметрии: в однородном и изотропном пространстве эта точка выделена среди всех остальных, ибо для любой другой точки А, расположенной ближе к одной из частиц, найдется симметричная ей точка В, расположенная ближе ко второй частице.

Рис. 110. Центр масс двух одинаковых частиц находится в точке С с радиусом-вектором ; центр масс двух частиц с разной массой делит отрезок между ними в отношении, обратно пропорциональном массам чатиц (б)

Очевидно, что радиус-вектор точки С равен полусумме радиусов-векторов одинаковых частиц (рис. 110а): Другими словами, представляет собой обычное среднее значение векторов

Определение центра масс. Как обобщить это определение на случай двух частиц с разными массами Можно ожидать, что наряду с геометрическим центром системы, радиус-вектор которого по-прежнему равен полусумме будет играть определенную роль точка, положение которой определяется распределением

ем масс. Ее естественно определить так, чтобы вклад каждой частицы был пропорционален ее массе:

Определяемый формулой (1) радиус-вектор центра масс представляет собой среднее взвешенное значение радиусов-векторов частиц что очевидно, если переписать (1) в виде

Радиус-вектор каждйй частицы входит в с весом, пропорциональным ее массе. Легко видеть, что определяемый формулой (1) центр масс С лежит на отрезке прямой, соединяющей частицы, и делит его в отношении, обратно пропорциональном массам частиц: (рис. 110б).

Обратим внимание на то, что приведенное здесь определение центра масс связано с известным вам условием равновесия рычага. Представим себе, что точечные массы на которые действует однородное поле тяжести, соединены стержнем пренебрежимо малой массы. Такой рычаг будет в равновесии, если точку его опоры поместить в центр масс С.

Естественным обобщением формулы (1) на случай системы, состоящей из материальных точек с массами и радиусами-векторами является равенство

которое служит определением радиуса-вектора центра масс (или центра инерции) системы.

Скорость центра масс. Центр масс характеризует не только положение, но и движение системы частиц как целого. Скорость центра масс, определяемая равенством как следует из (2), следующим образом выражается через скорости образующих систему частиц:

В числителе правой части этого выражения, как следует из формулы (6) предыдущего параграфа, стоит полный импульс системы Р, а в знаменателе - ее полная масса М. Поэтому импульс системы частиц равен произведению массы всей системы М на скорость ее центра масс

Формула (4) показывает, что импульс системы связан со скоростью ее центра масс точно так же, как импульс отдельной частицы связан со скоростью частицы. Именно в этом смысле движение центра масс и характеризует движение системы как целого.

Закон движения центра масс. Закон изменения импульса системы частиц, выражаемый формулой (9) предыдущего параграфа, по существу представляет собой закон движения ее центра масс. В самом деле, из (4) при неизменной полной массе М системы имеем

что означает, что скорость изменения импульса системы равна произведению ее массы на ускорение центра масс. Сравнивая (5) с формулой (6) § 29, получаем

Согласно (6) центр масс системы движется так, как двигалась бы одна материальная точка массы М под действием силы, равной сумме всех внешних сил, действующих на входящие в систему частицы. В частности, центр масс замкнутой физической системы, на которую внешние силы не действуют, движется в инерциальной системе отсчета равномерно и прямолинейно либо покоится.

Представление о центре масс в ряде случаев позволяет получить ответы на некоторые вопросы еще проще, чем при непосредственном использовании закона сохранения импульса. Рассмотрим следующий пример.

Космонавт вне корабля. Космонавт массы неподвижный относительно космического корабля массы с выключенным двигателем, начинает подтягиваться к кораблю с помощью легкого страховочного фала. Какие расстояния пройдут космонавт и корабль до встречи, если первоначально расстояние между ними равно

Центр масс корабля и космонавта находится на соединяющей их прямой, причем соответствующие расстояния обратно пропорциональны массам Так как то

сразу получаем

В далеком космосе, где внешние силы отсутствуют, центр масс этой замкнутой системы либо покоится, либо движется с постоянной скоростью. В той системе отсчета, где он покоится, космонавт и корабль пройдут до встречи расстояния , даваемые формулами (7).

Для справедливости подобных рассуждений принципиально важно использовать инерциальную систему отсчета. Если бы здесь мы опрометчиво связали систему отсчета с космическим кораблем, то пришли бы к заключению, что при подтягивании космонавта центр масс системы приходит в движение в отсутствие внешних сил: он приближается к кораблю. Центр масс сохраняет свою скорость только относительно инерциальной системы отсчета.

В уравнение (6), определяющее ускорение центра масс системы частиц, не входят действующие в ней внутренние силы. Значит ли это, что внутренние силы вообще никак не влияют на движение центра масс? В отсутствие внешних сил или когда эти силы постоянны, это действительно так. Например, в однородном поле тяжести центр масс разорвавшегося в полете снаряда продолжает движение по той же параболе, пока ни один из осколков еще не упал на землю.

Роль внутренних сил. В тех случаях, когда внешние силы могут изменяться, дело обстоит несколько сложнее. Внешние силы действуют не на центр масс, а на отдельные частицы системы. Эти силы могут зависеть от положения частиц, а положение каждой частицы при ее движении определяется всеми действовавшими на нее силами, как внешними, так и внутренними.

Поясним это на том же простом примере снаряда, разрывающегося в полете на мелкие осколки под действием внутренних сил. Пока все осколки в полете, центр масс, как уже говорилось, продолжает движение по той же параболе. Однако как только хотя бы один из осколков коснется земли и его движение прекратится, добавится новая внешняя сила - сила реакции поверхности земли, действующая на упавший осколок. В результате изменится ускорение центра масс, и он уже не будет двигаться по прежней параболе. Само появление этой силы реакции является следствием действия внутренних сил, разорвавших снаряд. Итак, действие внутренних сил в момент разрыва снаряда может привести к изменению ускорения, с которым будет двигаться центр масс в более поздние моменты времени и, следовательно, к изменению его траектории.

Приведем еще более яркий пример влияния внутренних сил на движение центра масс. Представим себе, что спутник Земли,

обращающийся вокруг нее по круговой орбите, под действием внутренних сил разделяется на две половины. Одна из половин останавливается и начинает отвесно падать на Землю. По закону сохранения импульса вторая половина должна в этот момент вдвое увеличить свою скорость, направленную по касательной к окружности. Как мы увидим ниже, при такой скорости эта половина улетит от Земли на бесконечно большое расстояние. Следовательно, и центр масс спутника, т. е. двух его половин, также удалится на бесконечно большое расстояние от Земли. И причина тому - действие внутренних сил при разделении спутника на две части, так как в противном случае неразделившийся на части спутник продолжал бы движение по круговой орбите.

Реактивное движение. Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сжигании топлива повышается температура и в камере сгорания создается высокое давление, благодаря чему образовавшиеся газы с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Уравнение Мещерского. Получим уравнение, описывающее движение ракеты. Пусть в некоторый момент времени ракета в какой-то инерциальной системе отсчета имеет скорость Введем другую инерциальную систему отсчета, в которой в данный момент времени ракета неподвижна. Назовем такую систему отсчета сопутствующей. Если работающий двигатель ракеты за промежуток выбрасывает газы массы со скоростью относительно ракеты, то спустя время скорость ракеты в этой сопутствующей системе будет отлична от нуля и равна

Применим к рассматриваемой замкнутой физической системе ракета плюс газы закон сохранения импульса. В начальный момент в сопутствующей системе отсчета ракета и газы покоятся, поэтому полный импульс равен нулю. Спустя время импульс ракеты равен а импульс выброшенных газов Поэтому

Полная масса системы ракета плюс газы сохраняется, поэтому масса выброшенных газов равна убыли массы ракеты:

Теперь уравнение (8) после деления на промежуток времени переписывается в виде

Переходя к пределу получаем уравнение движения тела переменной массы (ракеты) в отсутствие внешних сил:

Уравнение (9) имеет вид второго закона Ньютона, если его правую часть рассматривать как реактивную силу, т. е. силу, с которой действуют на ракету вылетающие из нее газы. Масса ракеты здесь не постоянна, а убывает со временем из-за потери вещества, т. е. Поэтому реактивная сила; направлена в сторону, противоположную скорости вылетающих из сопла газов относительно ракеты. Видно, что эта сила тем больше, чем больше скорость истечения газов и чем выше расход топлива в единицу времени.

Уравнение (9) получено в определенной инерциальной системе отсчета - сопутствующей системе. Вследствие принципа относительности оно справедливо и в любой другой инерциальной системе отсчета. Если, кроме реактивной силы, на ракету действуют и какие-либо другие внешние силы например сила тяжести и сила сопротивления воздуха, то их следует добавить в правую часть уравнения (9):

Это уравнение впервые было получено Мещерским и носит его имя. При заданном режиме работы двигателя, когда масса представляет собой определенную известную функцию времени, уравнение Мещерского позволяет рассчитать скорость ракеты в любой момент времени.

Какие физические соображения свидетельствуют о целесообразности определения центра масс с помощью формулы (1)?

В каком смысле центр масс характеризует движение системы частиц как целого?

О чем говорит закон движения центра масс системы взаимодействующих тел? Влияют ли внутренние силы на ускорение центра масс?

Могут ли внутренние силы влиять на траекторию центра масс системы?

В задаче о разрыве снаряда, рассмотренной в предыдущем параграфе, закон движения центра масс позволяет сразу найти дальность полета второго осколка, если его начальная скорость горизонтальна. Как это сделать? Почему эти соображения неприменимы в случае, когда его начальная скорость имеет вертикальную составляющую?

В процессе разгона ракеты ее двигатель работает в постоянном режиме, так что относительная скорость истечения газов и расход топлива в единицу времени неизменны. Будет ли при этом ускорение ракеты постоянным?

Выведите уравнение Мещерского, используя вместо сопутствующей системы отсчета инерциальную систему, в которой ракета уже имеет скорость

Формула Циолковского. Допустим, что разгон ракеты происходит в свободном пространстве, где на нее не действуют внешние силы. По мере вырабатывания топлива масса ракеты убывает. Найдем зависимость между массой израсходованного топлива и набранной ракетой скоростью.

После включения двигателя покоившаяся ракета начинает набирать скорость, двигаясь по прямой линии. Спроецировав векторное уравнение (9) на направление движения ракеты, получим

Будем в уравнении (11) рассматривать массу ракеты как функцию набранной ракетой скорости Тогда скорость изменения массы со временем можно представить следующим образом:

Центр масс. Уравнение движения центра масс. Сам закон: Тела действуют друг на друга с силами имеющими одинаковую природу направленными вдоль одной и той же прямой равными по модулю и противоположными по направлению: Центр масс это геометрическая точка характеризующая движение тела или системы частиц как целого. Определение Положение центра масс центра инерции в классической механике определяется следующим образом: где радиусвектор центра масс радиусвектор iй точки системы масса iй точки.

7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.

Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия.

Сам закон:

Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению:

Центр масс — это геометрическая точка, характеризующая движение тела или системы частиц как целого.

Определение

Положение центра масс (центра инерции) в классической механике определяется следующим образом:

где — радиус-вектор центра масс, — радиус-вектор i -й точки системы,

— масса i -й точки.

.

Это уравнение движения центра масс системы материальных точек с массой, равной массе всей системы, к которой приложена сумма всех внешних сил (главный вектор внешних сил) или теорема о движении центра масс.


А также другие работы, которые могут Вас заинтересовать

22476. КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА, ПЕЙДЖЕРЫ, РЕПИТЕРЫ, ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. 1.21 MB
КЛАССИФИКАЦИЯ СИСТЕМ ПЕРСОНАЛЬНОГО РАДИОВЫЗОВА ПЕЙДЖЕРЫ РЕПИТЕРЫ ОСНОВНЫЕ ПРОТОКОЛЫ ПЕРЕДАЧИ ИНФОРМАЦИИ. Цель работы Изучить классификацию систем персонального радиовызова пейджеры репитеры основные протоколы передачи информации. Ознакомиться с основными протоколами передачи информации в СПРВ. При этом для передачи вызова абоненту использовалось последовательное тональное кодирование адреса обеспечивающее возможность обслуживания до нескольких десятков тысяч пользователей.
22477. ИЗУЧЕНИЕ МЕТОДОВ КОДИРОВАНИЯ РЕЧЕВЫХ СИГНАЛОВ В СТАНДАРТЕ ТЕТRА ТРАНКИНГОВЫХ СЕТЕЙ 961.5 KB
Задание Ознакомиться с общим описанием алгоритма кодирования речевого сигнала. Изучить особенности канального кодирования для различных логических каналов. Oбщее описание алгоритма кодирования речевого сигнала СЕLР Для кодирования информационного уплотнения речевых сигналов в стандарте ТЕТRА используется кодер с линейным предсказанием и многоимпульсным возбуждением от кода СЕLР Соdе Ехсited Linear Ргеdiction.
22478. СИСТЕМА СОТОВОЙ СВЯЗИ СТАНДАРТА GSM-900 109.5 KB
Цель работы Изучить основные технические характеристики функциональное построение и интерфейсы принятые в цифровой сотовой системе подвижной радиосвязи стандарта GSM. Задание Ознакомиться с общими характеристиками стандарта GSM. Краткая теория Стандарт GSM Global System for Mobile communications тесно связан со всеми современными стандартами цифровых сетей в первую очередь с ISDN и IN Intelligent Network.

Дифференциальные уравнения движения системы

Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

Теорема о движении центра масс системы

Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

$R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

$\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

Из формулы (2) имеем:

Беря вторую производную по времени, получаем:

$\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

где $\overline{a}_{c} $- ускорение центра масс системы.

Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

$M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проецируя обе части равенства (5) на координатные оси, получим:

$M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение теоремы состоит в следующем:

Теорема

  • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
  • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

Пример

Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

\[\omega \] \[\alpha \]

На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

Запишем второй закон Ньютона для нашей системы:

Спроецируем обе части на оси x и y:

\[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

Разделив одно уравнение на другое, получим:

Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

МЕХАНИЧЕСКАЯ СИСТЕМА – это произвольный заранее выбранный набор материальных тел, поведение которых анализируется.

В дальнейшем будет использоваться следующее правило: В МАТЕМАТИЧЕСКИХ ВЫКЛАДКАХ ХАРКТЕРИСТИКИ МАТЕРИАЛЬНЫХ ТОЧЕК В ОТЛИЧИЕ ОТ ХАРАКТЕРИСТИК МАТЕРИАЛЬНЫХ ТЕЛ, БУДУТ ИМЕТЬ ИНДЕКС.

МАССА ТЕЛА – это сумма масс всех материальных точек, составляющих данное тело

ВНЕШНИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему и не включенных.

ВНУТРЕННИЕ СИЛЫ – это силы взаимодействия материальных точек, включенных в механическую систему.

ТЕОРЕМА Д1 . Сумма внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, для любой пары материальных точек механической системы сумма сил их взаимодействия всегда равна нулю. Но все взаимодействующие точки принадлежат системе и, следовательно, любой из внутренних сил всегда найдется противодействующая внутренняя сила. Следовательно, полная сумма всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д2 .Сумма моментов внутренних сил механической системы всегда равна нулю .

Доказательство . Согласно аксиоме Д5, каждой внутренней силе найдется противодействующая внутренняя сила. Поскольку линии действия этих сил совпадают, то их плечи относительно любой точки пространства будут одинаковы и, следовательно, их моменты, относительно выбранной точки пространства по величине одинаковы, но знаки имеют разные, так как силы направлены противоположно. Следовательно, полная сумма моментов всех внутренних сил обязательно равна нулю. Ч.т.д.

ТЕОРЕМА Д3 .Произведение массы всей механической системы на ускорение ее центра масс равняется сумме всех внешних сил, действующих на систему.

Доказательство . Рассмотрим произвольную механическую систему, состоящую из конечного числа материальных тел. На основании аксиомы Д2 каждое тело можем разбить на конечное число материальных точек. Пусть всего получено n таких точек. Для каждой такой точки на основании аксиомы Д4 можно составить уравнение движения

Учитывая, что (КИНЕМАТИКА стр. 3), а также разбив все силы, действующие на i -ю точку, на внешние и внутренние, получим из предыдущего равенства

Если просуммировать уравнения движения всех точек системы, получим

Используя коммутативность операций суммирования и дифференцирования (фактически знаки суммирования и дифференцирования можно менять местами), получим

(40)

Выражение, полученное в скобках, может быть представлено через координату центра масс системы (СТАТИКА стр. 15)

где m – масса всей системы;

Радиус-вектор центра масс системы.

Как следует из теоремы Д1, последнее слагаемое в выражении (40) обращается в ноль, поэтому

или , ч.т.д. (41)

Следствие . Центр масс механической системы движется таким образом, как если бы он был материальной точкой, обладающей всей массой системы и к которой приведены все внешние силы .

Движение механической системы в отсутствие внешних сил

Теорема Д4. Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении, то центр масс системы в этом направлении будет двигаться с постоянной скоростью.

Доказательство Х совпадала с направлением, в котором внешние силы уравновешены, т.е. сумма проекций внешних сил на ось Х равна нулю

Тогда, согласно теореме Д3

Так как , следовательно

Если проинтегрировать последнее выражение, то получим

ТЕОРЕМА Д5 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то центр масс системы остается неподвижен все время движения.

Доказательство . Повторив рассуждения, приведенные в доказательстве предыдущей теоремы, получим, что скорость центра масс должна остаться такой же, какой она была в начальный момент, т.е. нулевой

Проинтегрировав это выражение, получим

ТЕОРЕМА Д6 . Если внешние силы, действующие на механическую систему, уравновешены в некотором направлении и в начальный момент система покоилась, то сумма произведений масс каждого из тел системы на абсолютное смещение его собственного центра масс в том же направлении равна нулю.

Доказательство . Выберем систему координат таким образом, чтобы ось Х совпадала с направлением, в котором внешние силы уравновешены или отсутствуют (F 1 , F 2 , …, F k на рис. 3), т.е. сумма проекций внешних сил на ось Х равна нулю

2024 litera-globus.ru. literaglobus - Образовательный портал.