Занимательная ядерная физика (13 фото). Nuclear Attack: критическая масса ядерного заряда Что называют критической массой урана

Для безопасной работы с ядерноопасными делящимися веществами параметры оборудования должны быть меньше критических. В качестве нормативных параметров ядерной безопасности используют: количество, концентрацию и объем ядерноопасного делящегося материала; диаметр оборудования, имеющего цилиндрическую форму; толщину плоского слоя для оборудования, имеющего форму пластины. Нормативный параметр устанавливают исходя из допустимого параметра, который меньше критического и не должен быть превышен при эксплуатации оборудования. При этом необходимо, чтобы характеристики, влияющие на критические параметры, находились в строго определенных пределах. Используются следующие допустимые параметры: количество М доп , объем V доп , диаметр D доп , толщина слоя t доп .

Используя зависимость критических параметров от концентрации ядерноопасного делящегося нуклида, определяют такое значение критического параметра, ниже которого при любой концентрации СЦРД невозможна. Например, для растворов солей плутония и обогащенного урана критические масса, объем, диаметр бесконечного цилиндра, толщина бесконечного плоского слоя имеют минимум в области оптимального замедления. Для смесей металлического обогащенного урана с водой критическая масса, как и для растворов, имеет ярко выраженный минимум в области оптимального замедления, а критические объем, диаметр бесконечного цилиндра, толщина бесконечного плоского слоя при высоком обогащении (>35 %) имеют минимальные значения при отсутствии замедлителя (r н /r 5 =0); для обогащения ниже 35% критические параметры смеси имеют минимум при оптимальном замедлении. Очевидно, что параметры, установленные исходя из минимальных критических параметров, обеспечивают безопасность во всем интервале изменения концентрации. Эти параметры называются безопасными , они меньше минимальных критических параметров. Используются следующие безопасные параметры: количество, концентрация, объем, диаметр, толщина слоя.

При обеспечении ядерной безопасности системы по допустимому параметру обязательно ограничивается концентрация делящегося нуклида (иногда количество замедлителя), в то же время при использовании безопасного параметра никаких ограничений на концентрацию (или по количеству замедлителя) не накладывается.

2 КРИТИЧЕСКАЯ МАССА

Будет или не будет развиваться цепная реакция, зависит от результата соревнования четырёх процессов:

(1) Вылет нейтронов из урана,

(2) захват нейтронов ураном без деления,

(3) захват нейтронов примесями.

(4) захват нейтронов ураном с делением.

Если потеря нейтронов в первых трех процессах меньше количества нейтронов, освобождаемых в четвёртом, то цепная реакция происходит; в противном случае она невозможна. Очевидно, что если из первых трёх процессов весьма вероятен, то избыток нейтронов, освобождаемых при делении, не сможет обеспечить продолжение реакции. Например, в том случае, когда вероятность процесса (2) (захват ураном без деления) намного больше вероятности захвата с делением, цепная реакция невозможна. Дополнительную трудность вносит изотопный природного урана: он состоит из трех изотопов: 234 U, 235 U и 238 U, вклады которых 0,006, 0,7 и 99,3% соответственно. Важно, что вероятности процессов (2) и (4) различны для разных изотопов и по-разному зависят от энергии нейтронов.

Для оценки конкуренции различных процессов с точки зрения развития в веществе цепного процесса деления ядер вводится понятие «критическая масса».

Критическая масса – минимальная масса делящегося вещества, обеспечивающая протекание самоподдерживающейся ядерной цепной реакции деления. Критическая масса тем меньше, чем меньше период полураспада деления и чем выше обогащение рабочего элемента делящимся изотопом.

Критическая масса - минимальное количество делящегося вещества, необходимое для начала самоподдерживающейся цепной реакции деления. Коэффициент размножения нейтронов в таком количестве вещества равен единице.

Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Критические размеры ядерного реактора - наименьшие размеры активной зоны реактора, при которых ещё может осуществляться самоподдерживающаяся реакция деления ядерного горючего. Обычно под критическим размером принимают критический объём активной зоны.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии.

Относительное количество нейтронов, которые вылетают из урана, может быть уменьшено изменением размеров и формы. В сфере поверхностные эффекты пропорциональны квадрату, а объемные - кубу радиуса. Вылет нейтронов из урана является поверхностным эффектом, зависящим от величины поверхности; захват с делением происходит во всем объеме, занимаемом материалом, и поэтому является

объемным эффектом. Чем больше количество урана, тем меньше вероятность того, что вылет нейтронов из объема урана будет преобладать над захватами с делением и препятствовать цепной реакции. Потеря нейтронов на захваты без деления является объемным эффектом, подобно освобождению нейтронов при захвате с делением, так что увеличение размеров не изменяет их относительной важности.

Критические размеры устройства, содержащего уран, можно определить как размеры, при которых количество освобождаемых при делении нейтронов в точности равно их потере вследствие вылета и захватов, не сопровождающихся делением. Другими словами, если размеры меньше критических, то, по определению, цепная реакция не может развиться.

Критическую массу могут образовывать только нечётные изотопы. Лишь 235 U встречается в природе, а 239 Pu и 233 U - искусственные, они образуются в ядерном реакторе (в результате захвата нейтронов ядрами 238 U

и 232 Th с двумя последующими β - распадами).

В природном уране цепная реакция деления не может развиться ни при каком количестве урана, однако, в таких изотопах, как 235 U и 239 Pu цепной процесс достигается сравнительно легко. При наличии замедлителя нейтронов, цепная реакция идёт и в природном уране.

Необходимым условием для осуществления цепной реакции является наличие достаточно большого количества делящегося вещества, так как в образцах малых размеров большинство нейтронов пролетает сквозь образец, не попав ни в одно ядро. Цепная реакция ядерного взрыва возникает при достижении

делящимся веществом некоторой критической массы.

Пусть имеется кусок вещества, способного к делению, например, 235 U, в который попадает нейтрон. Этот нейтрон либо вызовет деление, либо бесполезно поглотится веществом, либо, продиффундировав, выйдет через наружную поверхность. Важно, что будет на следующем этапе – уменьшится или уменьшится число нейтронов в среднем, т.е. ослабнет или разовьется цепная реакция, т.е. будет ли система в подкритическом или в надкритическом (взрывном) состоянии. Так как вылет нейтронов регулируется размером (для шара – радиусом), то возникает понятие критического размера (и массы). Для развития взрыва размер должен быть больше критического.

Критический размер делящейся системы можно оценить, если известна длина пробега нейтронов в делящемся материале.

Нейтрон, летая по веществу, изредка сталкивается с ядром, он как бы видит его поперечное сечение. Размер поперечного сечения ядра σ=10-24 см2 (барн). Если N - число ядер в кубическом сантиметре, то комбинация L =1/N σ дает среднюю длину пробега нейтрона по отношению к ядерной реакции. Длина пробега нейтрона – единственная размерная величина, которая может послужить отправной точкой оценки критразмера. В любой физической теории используются методы подобия, которые, в свою очередь, строятся из безразмерных комбинаций размерных величин, характеристик системы и вещества. Таким безразмерным

числом является отношение радиуса куска делящегося материала к длине пробега в нем нейтронов. Если принять, что безразмерное число порядка единицы, а длина пробега при типичном значении N =1023 , L = 10 см

(для σ =1) (обычно σ обычно намного выше 1, так что критическая масса меньше нашей оценки). Критическая масса зависит от сечения реакции деления конкретного нуклида. Так, для создания атомной бомбы необходимо примерно 3 кг плутония или 8 кг 235 U (при имплозивной схеме и в случае чистого 235 U) При стволовой схеме атомной бомбы требуется примерно 50 кг оружейного урана (При плотности урана 1,895·104 кг/м3 радиус шара такой массы равен примерно 8,5 см, что на удивление хорошо совпадает с нашей оценкой

R =L =10 см).

Выведем теперь более строгую формулу для расчета критического размера куска делящегося материала.

Как известно, при распаде ядра урана образуется несколько свободных нейтронов. Часть из них покидает образец, а часть поглощается другими ядрами, вызывая их деление. Цепная реакция возникает, если число нейтронов в образце начинает лавинообразно расти. Для определения критической массы можно использовать уравнение диффузии нейтронов:

∂C

D C + β C

∂t

где С - концентрация нейтронов, β>0 – константа скорости реакции размножения нейтронов (аналогично постоянной радиоактивного распада имеет размерность 1/сек, D -коэффициент диффузии нейтронов,

Пусть образец имеет форму шара радиусом R . Тогда нам надо найти решение уравнения (1), удовлетворяющее краевому условию: C (R,t )=0.

Сделаем замену C = ν e β t , тогда

∂C

∂ν

ν = D

+ βν e

∂t

∂t

Получили классическое уравнение теплопроводности:

∂ν

D ν

∂t

Решение этого уравнения хорошо известно

π 2 n 2

ν (r , t )=

sin π n re

π 2 n

β −

C(r, t) =

sin π n re

r n = 1

Цепная реакция пойдёт при условии (то есть

C(r, t)

t →∞ → ∞ ), что хотя бы при одном n коэффициент в

показателе степени положителен.

Если β − π 2 n 2 D > 0,

то β > π 2 n 2 D и критический радиус сферы:

R = π n

Если π

≥ R , то ни при каком n не будет растущей экспоненты

Если π

< R , то хотя бы при одном n мы получим растущую экспоненту.

Ограничимся первым членом ряда, n =1:

R = π

Критическая масса:

M = ρ V = ρ

Минимальное значение радиуса шара, при котором возникает цепная реакция называется

критическим радиусом, а масса соответствующего шара - критической массой.

Подставив значение для R , получим формулу для расчета критической массы:

M кр = ρπ 4 4 D 2 (9) 3 β

Величина критической массы зависит от формы образца, коэффициента размножения нейтронов и коэффициента диффузии нейтронов. Их определение является сложной экспериментальной задачей, поэтому полученная формула используется для определения указанных коэффициентов, а проведенные выкладки являются доказательством существования критической массы.

Роль размеров образца очевидна: с уменьшением размеров процент нейтронов, вылетающих через ее поверхность, увеличивается, так что при малых (ниже критических!) размерах образца цепная реакция становится невозможной даже при благоприятном соотношении между процессами поглощения и образования нейтронов.

Для высокообогащенного урана значение критической массы составляет около 52 кг, для оружейного плутония - 11 кг. В нормативных документах по охране ядерных материалов от хищения указываются критические массы: 5 кг 235 U или 2 кг плутония (для имплозивной схемы атомной бомбы). Для пушечной схемы критические массы намного больше. На базе этих значений строится интенсивность защиты делящихся веществ от нападения террористов.

Замечание. Критическая масса системы из металлического урана 93,5% обогащения (93,5% 235 U; 6,5% 238 U) равна 52 кг без отражателя и 8,9 кг, когда система окружена отражателем нейтронов из оксида бериллия. Критическая масса водного раствора урана – примерно 5 кг.

Величина критической массы зависит от свойств вещества (таких, как сечения деления и радиационного захвата), от плотности, количества примесей, формы изделия, а также от окружения. Например, наличие отражателей нейтронов может сильно уменьшить критическую массу. Для конкретного делящегося вещества количество материала, которое составляет критическую массу, может изменяться в широком диапазоне и зависит от плотности, характеристик (вид материала и толщина) отражателя, а также от природы и процентного содержания любых присутствующих инертных разбавителей (таких как кислород в оксиде урана, 238 U в частично обогащенном 235 U или химические примеси).

В целях сравнения, привёдем критические массы шаров без отражателя для нескольких видов материалов с некоторой стандартной плотностью.

Для сравнения приведем следующие примеры критических масс: 10 кг 239 Pu, металл в альфа-фазе

(плотность 19,86 г/см3 ); 52 кг 94%-го 235 U (6% 238 U), металл (плотность 18,72 г/см3 ); 110 кг UO2 (94% 235 U)

при плотности в кристаллическом виде 11 г/см3 ; 35 кг PuO2 (94% 239 Pu) при плотности в кристаллическом

виде 11,4 г/см3 . Наименьшей критической массой обладают растворы солей чистых делящихся нуклидов в воде с водяным отражателем нейтронов. Для 235 U Критическая масса равна 0,8 кг, для 239 Pu - 0,5 кг, для 251 Cf -

Критическая масса M связана с критической длиной l: М l x , где x зависит от формы образца и лежит в пределах от 2 до 3. Зависимость от формы связана с утечкой нейтронов через поверхность: чем больше поверхность, тем больше критическая масса. Образец с минимальной критической массой имеет форму шара. Табл. 5. Основные оценочные характеристики чистых изотопов способных к ядерному делению

Нейтроны

Получение

Критическая

Плотность

Температура

Тепловыделение

спонтанного

полураспада

(источник)

г/см³

плавления °С

T 1/2

105 (кг·сек)

231Pa

232U

Реактор на

нейтронах

233U

235U

Природный

7,038×108 лет

236U

2,3416×107 лет? кг

237Np

2,14×107 лет

236Pu

238Pu

239Pu

240Pu

241Pu

242Pu

241Am

242mAm

243mAm

243Am

243Cm

244Cm

245Cm

246Cm

247Cm

1,56×107 лет

248Cm

249Cf

250Cf

251Cf

252Cf

Остановимся несколько подробнее на критических параметрах изотопов некоторых элементов. Начнём с урана.

Как уже неоднократно упоминалось, 235 U (кларк 0,72%) имеет особо важное значение, поскольку делится под действием тепловых нейтронов (σ f =583 барн), выделяя при этом «тепловой нергетический эквивалент» 2×107 кВт×ч/к. Поскольку помимо α -распада 235 U ещё и спонтанно делится (Т 1/2 =3,5×1017 лет), то в массе урана всегда присутствуют нейтроны, а значит возможно создание условий для возникновения самоподдерживающейся цепной реакции деления. Для металлического урана с обогащением 93,5 % критическая масса равна: 51 кг без отражателя; 8,9 кг с отражателем из оксида бериллия; 21,8 кг с полным водяным отражателем. Критические параметры гомогенных смесей урана и его соединений приведены в

Критические параметры изотопов плутония: 239 Pu: М кр = 9,6 кг, 241 Pu: М кр =6,2 кг, 238 Pu: М кр = от 12 до 7,45 кг. Наибольший интерес представляют смеси изотопов: 238 Pu, 239 Pu, 240 Pu, 241 Pu. Большое удельное энерговыделение 238 Pu приводит к окислению металла в воздухе, поэтому наиболее вероятно его использование в виде оксидов. При получении 238 Pu сопутствующим изотопом является 239 Pu. Соотношение этих изотопов в смеси определяет как значение критических параметров, так и их зависимость при изменении содержания замедлителя. Различные оценки критической массы для голой металлической сферы из 238 Pu дают значения от 12 до 7,45 кг по сравнению с критической массой для 239 Pu, равной 9,6 кг. Так как ядро 239 Pu содержит нечетное число нейтронов, то критическая масса при добавлении в систему воды будет уменьшаться. Критическая масса 238 Pu при добавлении воды увеличивается. Для смеси этих изотопов суммарный эффект добавления воды зависит от соотношения изотопов. При массовом содержании 239 Pu, равном 37% или меньше, критическая масса смеси изотопов 239 Pu и 238 Pu не уменьшается при добавлении в систему воды. В этом случае допустимое количество диоксидов 239 Pu-238 Pu составляет 8 кг. При других

соотношениях диоксидов 238 Pu и 239 Pu минимальное значение критической массы изменяется от 500 г для чистого 239 Pu до 24,6 кг для чистого 238 Pu.

Табл. 6. Зависимость критической массы и критического объёма урана от обогащения по 235 U.

Примечание. I - гомогенная смесь металлического урана и воды; II - гомогенная смесь диоксида урана и воды; III - раствор уранилфторида в воде; IV - раствор уранилнитрата в воде. * Данные, полученные с помощью графической интерполяции.

Другим изотопом с нечетным числом нейтронов является 241 Pu. Минимальное значение критической массы для 241 Pu достигается в водных растворах при концентрации 30 г/л и составляет 232 кг. При получении 241 Pu из облученного горючего ему всегда сопутствует 240 Pu, который по содержанию не превосходит его. При равном отношении нуклидов в смеси изотопов минимальная критическая масса 241 Pu превышает критическую массу 239 Pu. Следовательно, по отношению к минимальной критической массе изотоп 241 Pu при

оценке ядерной безопасности можно заменить 239 Pu, если в смеси изотопов находятся равные количества

241 Pu и 240 Pu.

Табл. 7. Минимальные критические параметры урана с обогащением 100% по 233 U.

Рассмотрим теперь критические характеристики изотопов америция. Присутствие в смеси изотопов 241 Am и 243 Am увеличивает критическую массу 242 m Am. Для водных растворов существует такое соотношение изотопов, при котором система всегда подкритична. При массовом содержании 242 m Am в смеси 241 Am и 242 m Am менее 5% система остается подкритической вплоть до концентрации америция в растворах и механических смесях диоксида с водой, равной 2500 г/л. 243 Am в смеси с 242m Am также увеличивает

критическую массу смеси, но в меньшей степени, так как сечение захвата тепловых нейтронов для 243 Am на порядок ниже, чем у 241 Am

Табл. 8. Критические параметры гомогенных плутониевых (239 Pu+240 Pu) сферических сборок.

Табл. 9. Зависимость критических массы и объема для соединений плутония* от изотопного состава плутония

* Основной нуклид 94 239 Pu.

Примечание . I - гомогенная смесь металлического плутония и воды; II - гомогенная смесь диоксида плутония и воды; IIIгомогенная смесь оксалата плутония и воды; IV - раствор нитрата плутония в воде.

Табл. 10. Зависимость минимальной критической массы 242 m Am от его содержания в смеси 242 m Am и 241 Am (критическая масса рассчитана для AmO2 +H2 O в сферической геометрии с водяным отражателем):

Критическая масса 242 m Am, г

При малой массовой доле 245 Cm нужно учитывать, что 244 Cm также имеет конечную критическую массу в системах без замедлителей. Другие изотопы кюрия с нечетным числом нейтронов имеют минимальную критическую массу в несколько раз большую, чем 245 Cm. В смеси СmО2 + Н2 О изотоп 243 Cm имеет минимальную критическую массу порядка 108 г, a 247 Cm - порядка 1170 г. По отношению к

критической массе можно считать, что 1 г 245 Cm эквивалентен 3 г 243 Cm или 30 г 247 Cm. Минимальная критическая масса 245 Cm, г, в зависимости от содержания 245 Cm в смеси изотопов 244 Cm и 245 Cm для СmО2 +

Н2 О достаточно хорошо описывается формулой

М кр = 35,5 +

ξ + 0,003

где ξ - массовая доля 245 Cm в смеси изотопов кюрия.

Критическая масса зависит от сечения реакции деления. При создании оружия, всяческими ухищрениями можно уменьшить требуемую для взрыва критическую массу. Так, для создания атомной бомбы необходимо 8 кг урана-235 (при имплозивной схеме и в случае чистого урана-235; при использовании же 90% урана-235 и при стволовой схеме атомной бомбы требуется не менее 45 кг оружейного урана). Критическую массу можно существенно уменьшить, окружив образец делящегося вещества слоем материала, отражающего нейтроны, например, бериллия или природного урана. Отражатель возвращает значительную часть нейтронов, вылетающих через поверхность образца. Например, если использовать отражатель толщиной в 5 см, изготовленный из таких материалов, как уран, железо, графит, критическая масса составит половину от критической массы «голого шара». Более толстые отражатели уменьшают критическую массу. Особенно эффективен бериллий, обеспечивающий критическую массу в 1/3 от стандартной критической массы. Система на тепловых нейтронах имеет самый большой критический объем и минимальную критическую массу.

Важную роль играет степень обогащения по делящемуся нуклиду. Природный уран с содержанием 235 U 0,7% не может быть использован для изготовления атомного оружия, поскольку остальной уран (238 U) интенсивно поглощает нейтроны, препятствуя развитию цепного процесса. Поэтому изотопы ураны необходимо разделить, что представляет собой сложную и трудоёмкую задачу. Разделение приходится вести до степеней обогащения по 235 U выше 95%. Попутно необходимо избавляться от примесей элементов с высоким сечением захвата нейтронов.

Замечание. При приготовлении оружейного урана, не просто избавляются от ненужных примесей, а замещают их на другие примеси, способствующие цепному процессу, например, вводят элементы – размножители нейтронов.

Уровень обогащения урана оказывает существенное влияние на величину критической массы. Например, критическая масса урана с обогащением 235 U 50% составляет 160 кг (в 3 раза больше массы 94%- го урана), а критическая масса 20%-го урана составляет 800 кг (то есть в ~15 раз больше, чем критическая масса 94%-го урана). Аналогичные коэффициенты зависимости от уровня обогащения применимы и к оксиду урана.

Критическая масса обратно пропорциональна квадрату плотности материала, М к ~1/ρ 2 , . Так, критическая масса металлического плутония в дельта-фазе (плотность 15,6 г/см3 ) составляет 16 кг. Это обстоятельство учитывается при конструировании компактной атомной бомбы. Поскольку вероятность захвата нейтронов пропорциональна концентрации ядер, увеличение плотности образца, например, в результате его сжатия, способно привести к возникновению в образце критического состояния. В ядерных взрывных устройствах масса делящегося вещества, находящаяся в безопасном подкритическом состоянии переводится во взрывное сверхкритическое с помощью направленного взрыва, подвергающего заряд сильной степени сжатия.

Чем больше размеры(утечка идет ведь только через поверхность) реактора и ближе форма активной зоны реактора к сфере, тем меньше(при прочих равных условиях) утечка и тем выше Р.

Для цепной реакции к эфф =Р∙к ∞ =1

Это достигается при определенном min размере реактора, который называется критическим размером реактора.

А наименьшая масса ядерного топлива, содержащегося в активной зоне реактора критического размера, при котором может ошуществлятся цепная реакция деления топлива,называется критической массой. Величина ее зависит от ряда факторов:

1).степени обогащения топлива;

2).количества и ядерных свойств замедлителя и конструкционных материалов;

3).наличия эффективности отражателя.

Применение обогащения и позволяет уменьшить размеры критической массы и реактора(обогащение урана изотопом U 235 >5% не дает существенного увеличения в балансе нейтронов).

Критическая масса и размеры активной зоны реактора.

1).выгорания топлива для выработки заданного количества энергии(заданной мощности в течение заданного времени);

2).компенсации вредных поглощений и компенсации температурных эффектов, возникающих в процессе ядерной реакции.

Раз масса загруженного топлива больше критической к эфф >1, что ведет к надкритическому состоянию реактора.

Чтобы удержать к эфф =1, реактор имеет систему компенсации и регулирования, с помощью которой в активную зону вводятся специальные пластины и стержни сильно поглощающие нейтроны, перемещаемые по мере выгорания топлива.

Время работы топлива в реакторе при полной его мощности между загрузками называется кампанией реактора(регулируемые стержни изготавливают из кадмий-113, графит-114,бар-10).

С момента окончания самой страшной в истории человечества войны прошло чуть более двух месяцев. И вот 16 июля 1945 года американскими военными была испытана первая ядерная бомба, а спустя еще месяц в атомном пекле гибнут тысячи жителей японских городов. С тех оружие, так же как и средства доставки его к целям, непрерывно совершенствовалось на протяжении более полувека.

Военным хотелось получить в свое распоряжение как сверхмощные боеприпасы, одним ударом сметающие с карты целые города и страны, так и сверхмалые, умещающиеся в портфель. Такое устройство вывело бы диверсионную войну на небывалый доселе уровень. Как с первым, так и со вторым возникли непреодолимые трудности. Виной всему, так называемая, критическая масса. Однако, обо всем по порядку.

Такое взрывоопасное ядро

Чтобы разобраться в порядке работы ядерных устройств и понять, что называется критической массой, вернемся ненадолго за парту. Из школьного курса физики мы помним простое правило: одноименные заряды отталкиваются. Там же, в средней школе ученикам рассказывают о строении атомного ядра, состоящего из нейтронов, нейтральных частиц и протонов, заряженных положительно. Но как такое возможно? Положительно заряженные частицы расположены так близко друг к другу, силы отталкивания должны быть колоссальными.

Науке до конца не известна природа внутриядерных сил, удерживающих вместе протоны, хотя свойства этих сил изучены достаточно хорошо. Силы действуют только на очень близком расстоянии. Но стоит хотя бы чуть-чуть разделить протоны в пространстве, как силы отталкивания начинают превалировать, и ядро разлетается на куски. А мощность такого разлета воистину колоссальна. Известно, что силы взрослого мужчины не хватило бы для удержания протонов всего лишь одного единственного ядра атома свинца.

Чего испугался Резерфорд

Ядра большинства элементов таблицы Менделеева стабильны. Однако с ростом атомного числа эта стабильность все уменьшается. Дело в размере ядер. Представим себе ядро атома урана, состоящее из 238 нуклидов, из которых 92 - протоны. Да, протоны находятся в тесном контакте друг с другом, и внутриядерные силы надежно цементируют всю конструкцию. Но сила отталкивания протонов, находящихся на противоположных концах ядра становится заметной.

Что проделывал Резерфорд? Он производил бомбардировку атомов нейтронами (электрон не пройдет через электронную оболочку атома, а положительно заряженный протон не сможет приблизиться к ядру из-за сил отталкивания). Нейтрон, попадая в ядро атома, вызывал его деление. В стороны разлетались две отдельные половинки и два-три свободных нейтрона.

Этот распад, в силу громадных скоростей разлетающихся частиц, сопровождался выбросом громадной энергии. Ходил слух, что Резерфорд даже хотел скрыть свое открытие, испугавшись его возможных последствий для человечества, но это, скорее всего, не более чем сказки.

Так при чем тут масса и почему она критическая

Ну и что? Как можно облучить потоком протонов достаточное количество радиоактивного металла, чтобы получить мощный взрыв? И что такое критическая масса? Все дело в тех нескольких свободных электронах, которые вылетают из «разбомбленного» атомного ядра, они в свою очередь так же, столкнувшись с другими ядрами, вызовут их деление. Начнется так называемая Однако запустить ее будет чрезвычайно сложно.

Уточним масштаб. Если за ядро атома принять яблоко на нашем столе, то для того, чтобы представить себе ядро соседнего атома, такое же яблоко придется отнести и положить на стол даже не в соседней комнате, а… в соседнем доме. Нейтрон же будет размером с вишневую косточку.

Для того, чтобы выделившиеся нейтроны не улетали впустую за пределы слитка урана, а более 50 % из них находили бы себе цель в виде атомных ядер, этот слиток должен иметь соответствующие размеры. Вот что называется критической массой урана - масса, при которой более половины выделяющихся нейтронов сталкиваются с другими ядрами.

На деле это происходит в одно мгновение. Количество расщепленных ядер нарастает как лавина, их осколки устремляются во все стороны со скоростями сопоставимыми со скоростью света, вспарывая воздух, воду, любую другую среду. От их столкновений с молекулами окружающей среды область взрыва мгновенно нагревается до миллионов градусов, излучая жар, испепеляющий все в округе нескольких километров.

Резко нагретый воздух мгновенно увеличивается в размерах, создавая мощную ударную волну, которая сносит с фундаментов здания, переворачивает и крушит все на своем пути… такова картина атомного взрыва.

Как это выглядит на практике

Устройство атомной бомбы на удивление просто. Имеются два слитка урана (или другого масса каждого из которых немного меньше критической. Один из слитков изготовлен в виде конуса, другой - шара с конусообразным отверстием. Как нетрудно догадаться, при совмещении обеих половинок получается шар, у которого достигается критическая масса. Это стандартная простейшая ядерная бомба. Соединяются две половинки при помощи обычного тротилового заряда (конус выстреливается в шар).

Но не стоит думать, что такое устройство сможет собрать «на коленке» любой желающий. Весь фокус заключается в том, что уран, чтобы бомба из него взорвалась, должен быть очень чистым, наличие примесей - практически ноль.

Почему не бывает атомной бомбы размером с пачку сигарет

Все по той же причине. Критическая масса самого распространенного изотопа урана 235 составляет около 45 кг. Взрыв такого количества ядерного топлива - это уже катастрофа. А изготовить с меньшим количеством вещества невозможно - оно просто не сработает.

По той же причине не получилось и создать сверхмощные атомные заряды из урана или других радиоактивных металлов. Для того, чтобы бомба была очень мощной, ее делали из десятка слитков, которые при подрыве детонирующих зарядов устремлялись к центру, соединяясь как дольки апельсина.

Но что происходило на деле? Если по каким-то причинам два элемента встречались на тысячную долю секунды раньше остальных, критическая масса достигалась быстрее чем «подоспеют» остальные, взрыв происходил не той мощности, на которую рассчитывали конструкторы. Проблема сверхмощных ядерных боеприпасов была решена только с появлением термоядерного оружия. Но это чуть другая история.

А как же работает мирный атом

Атомная электростанция - по сути та же ядерная бомба. Только у этой «бомбы» ТВЭЛы (тепловыделяющие элементы), изготовленные из урана, находятся на некотором расстоянии друг от друга, что не мешает им обмениваться нейтронными «ударами».

ТВЭЛы изготавливаются в виде стержней, между которыми находятся регулирующие стержни, выполненные из материала, хорошо поглощающего нейтроны. Принцип работы прост:

  • регулирующие (поглощающие) стержни вводятся в пространство между стержнями урана - реакция замедляется или останавливается вовсе;
  • регулирующие стержни выводятся из зоны - радиоактивные элементы активно обмениваются нейтронами, ядерная реакция протекает интенсивнее.

Действительно, получается та же атомная бомба, в которой критическая масса достигается настолько плавно и регулируется так четко, что это не приводит к взрыву, а лишь к нагреву теплоносителя.

Хотя, к сожалению, как показывает практика, не всегда человеческий гений способен обуздать эту огромную и разрушительную энергию - энергию распада атомного ядра.

В очередную годовщину бадабума на Хиросиме и Нагасаки я решил прошерстить интернет на вопросы ядерного оружия, где почему и как создавалось меня мало интересовало (я уже знал)-меня больше интересовала как 2 куска плутония не плавятся а делают большой бабах.

Приглядывайте за инженерами - они начинают с сеялки, а заканчивают атомной бомбой.

Ядерная физика - одна из самых скандальных областей почтенной естественной науки. Именно в эту область человечество на протяжении полувека бросало миллиарды долларов, фунтов, франков и рублей, как в паровозную топку опаздывающего поезда. Теперь поезд, похоже, уже не опаздывает. Бушующее пламя сгорающих средств и человеко-часов утихло. Попробуем вкратце разобраться, что же это за поезд под названием «ядерная физика».

Изотопы и радиоактивность

Как известно, все сущее состоит из атомов. Атомы, в свою очередь состоят из электронных оболочек, живущих по своим умопомрачительным законам, и ядра. Классическая химия совершенно не интересуется ядром и его личной жизнью. Для нее атом - это его электроны и их способность к обменному взаимодействию. А от ядра химии нужна только его масса, чтобы рассчитывать пропорции реагентов. В свою очередь, ядерной физике глубоко плевать на электроны. Ее интересует крохотная (в 100 тысяч раз меньше радиуса орбит электронов) пылинка внутри атома, в которой сосредоточена практически вся его масса.

Что мы знаем о ядре? Да, оно состоит из положительно заряженных протонов и не имеющих электрического заряда нейтронов. Впрочем, это не совсем верно. Ядро - это не горсточка шариков двух цветов, как на иллюстрации из школьного учебника. Здесь работают совсем другие законы под названиемсильное взаимодействие, превращающие и протоны, и нейтроны в какое-то неразличимое месиво. Однако заряд этого месива в точности равен суммарному заряду входящих в него протонов, а масса - почти (повторяю, почти) совпадает с массой нейтронов и протонов, из которых состоит ядро.

Кстати, количество протонов неионизированного атома всегда совпадает с количеством электронов, имеющих честь его окружать. А вот с нейтронами дело не так просто. Собственно говоря, задача нейтронов - стабилизировать ядро, поскольку без них одноименно заряженные протоны не ужились бы вместе и микросекунды.

Возьмем для определенности водород. Самый обычный водород. Его устройство до хохота просто - один протон, окруженный одним орбитальным электроном. Водорода во Вселенной навалом. Можно сказать, что Вселенная состоит в основном из водорода.

Теперь аккуратно добавим к протону нейтрон. С точки зрения химии это все равно водород. А вот с точки зрения физики уже нет. Обнаружив два разных водорода, физики забеспокоились и тут же придумали называть обычный водород протием, а водород с нейтроном при протоне - дейтерием.

Наберемся наглости и скормим ядру еще один нейтрон. Теперь у нас еще один водород, еще более тяжелый - тритий. Он, опять же, с точки зрения химии практически не отличается от двух других водородов (ну, разве что в реакцию теперь вступает чуть менее охотно). Сразу хочу предупредить - никакими усилиями, угрозами и увещеваниями вы не сможете добавить к ядру трития еще один нейтрон. Здешние законы куда более строги, чем человеческие.

Итак, протий, дейтерий и тритий - это изотопы водорода. Их атомная масса различна, а заряд - нет. А ведь именно зарядом ядра определяется местоположение в периодической системе элементов. Потому и назвали изотопы изотопами. В переводе с греческого это означает «занимающие одно и то же место». Кстати говоря, всем известная тяжелая вода - это та же вода, но с двумя атомами дейтерия вместо протия. Соответственно, сверхтяжелая вода содержит вместо протия тритий.

Давайте взглянем снова на наши водороды. Так… Протий на месте, дейтерий на месте… А это еще кто? Куда делся мой тритий и откуда здесь появился гелий-3? У нашего трития один из нейтронов явно соскучился, решил сменить профессию и стал протоном. При этом он породил электрон и антинейтрино. Потеря трития - это, конечно, огорчительно, но зато мы теперь знаем, что он нестабилен. Кормежка нейтронами даром не прошла.

Итак, как вы поняли, изотопы бывают стабильные и нестабильные. Стабильных изотопов вокруг нас полно, а вот нестабильных, слава богу, практически нет. То есть они имеются, но в настолько рассеянном состоянии, что добывать их приходится ценой очень большого труда. К примеру, уран-235, который доставил столько нервотрепки Оппенгеймеру, составляет в природном уране всего лишь 0,7%.

Период полураспада

Здесь все просто. Периодом полураспада нестабильного изотопа называется промежуток времени, за который ровно половина атомов изотопа распадется и превратится в какие-то другие атомы. Уже знакомый нам тритий имеет период полураспада 12,32 года. Это - достаточно короткоживущий изотоп, хотя по сравнению с францием-223, у которого период полураспада составляет 22,3 минуты, тритий покажется седобородым аксакалом.

Никакие макроскопические внешние факторы (давление, температура, влажность, настроение исследователя, количество ассигнований, расположение звезд) не влияют на период полураспада. Квантовая механика нечувствительна к подобным глупостям.

Популярная механика взрыва

Суть любого взрыва - это стремительное высвобождение энергии, ранее находившейся в несвободном, связанном состоянии. Освободившаяся энергия рассеивается, преимущественно переходя в тепло (кинетическую энергию неупорядоченного движения молекул), ударную волну (тут тоже движение, но уже упорядоченное, по направлению от центра взрыва) и излучение - от мягкого инфракрасного до жестких коротковолновых квантов.

При химическом взрыве все относительно просто. Происходит энергетически-выгодная реакция, когда между собой взаимодействуют некие вещества. В реакции участвуют только верхние электронные слои некоторых атомов, а глубже взаимодействие не идет. Несложно догадаться, что скрытой энергии в любом веществе гораздо больше. Но каковы бы ни были условия опыта, сколь бы удачные реагенты мы ни подобрали, как бы ни выверяли пропорции - глубже в атом химия нас не пустит. Химический взрыв - явление примитивное, малоэффективное и, с точки зрения физики, до неприличия слабое.

Ядерная цепная реакция позволяет копнуть чуть глубже, включая в игру не только электроны, но и ядра. По-настоящему весомо это звучит, пожалуй, только для физика, а остальным приведу простую аналогию. Представьте себе гигантскую гирю, вокруг которой на расстоянии нескольких километров порхают наэлектризованные пылинки. Это атом, «гиря» - ядро, а «пылинки» - электроны. Что с этими пылинками ни делай, они не дадут и сотой доли той энергии, которую можно получить от увесистой гири. Особенно если в силу каких-то причин она расколется, и массивные обломки на огромной скорости разлетятся в разные стороны.

Ядерный взрыв задействует потенциал связи тяжелых частиц, из которых состоит ядро. Но это еще далеко не предел: скрытой энергии в веществе гораздо больше. И имя этой энергии - масса. Опять же, для не-физика это звучит немного непривычно, но масса - это энергия, только предельно сконцентрированная. Каждая частица: электрон, протон, нейтрон - все это мизерные сгустки невероятно плотной энергии, до поры до времени пребывающей в покое. Вы наверняка знаете формулу E=mc2, которую так полюбили авторы анекдотов, редакторы стенгазет и оформители школьных кабинетов. Она именно об этом, и именно она постулирует массу как не более чем одну из форм энергии. И она же дает ответ на вопрос, сколько энергии можно получить из вещества по максимуму.

Процесс полного перехода массы, то есть энергии связанной, в энергию свободную, называетсяаннигиляцией. По латинскому корню «nihil» несложно догадаться о ее сути - это превращение в «ничто», вернее - в излучение. Для ясности - немного цифр.

Взрыв Тротиловый эквивалент Энергия (Дж)

Граната Ф-1 60 грамм 2,50*105

Бомба, сброшенная на Хиросиму 16 килотонн 6,70*1013

Аннигиляция одного грамма материи 21,5 килотонн 8,99*1013

Один грамм любой материи (важна только масса) при аннигиляции даст больше энергии, чем небольшая ядерная бомба. По сравнению с такой отдачей смешными кажутся и упражнения физиков над расщеплением ядра, и уж тем более опыты химиков с активными реагентами.

Для аннигиляции нужны соответствующие условия, а именно - контакт материи с антиматерией. И, в отличие от «красной ртути» или «философского камня», антиматерия более чем реальна - для известных нам частиц существуют и исследованы аналогичные античастицы, а эксперименты по аннигиляции пар «электрон + позитрон» неоднократно проводились на практике. Но чтобы создать аннигиляционное оружие, необходимо собрать воедино некоторый весомый объем античастиц, а также ограничить их от контакта с любой материей вплоть до, собственно, боевого применения. Это, тьфу-тьфу, еще далекая перспектива.

Дефект массы

Последний вопрос, который осталось уяснить относительно механики взрыва, - это откуда все-таки берется энергия: та самая, которая высвобождается в ходе цепной реакции? Тут опять не обошлось без массы. Вернее, без ее «дефекта».

Вплоть до прошлого века ученые полагали, что масса сохраняется при любых условиях, и были по-своему правы. Вот мы опустили металл в кислоту - в реторте забурлило и сквозь толщу жидкости наверх устремились пузырьки газа. Но если взвесить реагенты до и после реакции, не забыв при этом и выделившийся газ, - масса сходится. И так будет всегда, пока мы оперируем килограммами, метрами и химическими реакциями.

Но стоит углубиться в область микрочастиц, как и масса тоже преподносит сюрприз. Оказывается, что масса атома может отнюдь не в точности равняться сумме масс частиц, его составляющих. При делении на части тяжелого ядра (к примеру, того же урана) «осколки» в сумме весят меньше, чем ядро до деления. За «разницу», также называемую дефектом массы, отвечают энергии связей внутри ядра. И именно эта разница уходит в тепло и излучение во время взрыва, причем все по той же простенькой формуле: E=mc2.

Это интересно: так сложилось, что тяжелые ядра энергетически выгодно делить, а легкие - объединять. Первый механизм работает в урановой или плутониевой бомбе, второй - в водородной. А из железа бомбу не сделать при всем желании: оно в этой линейке стоит ровно посередине.

Ядерная бомба

Соблюдая историческую последовательность, рассмотрим сначала ядерные бомбы и осуществим свой маленький «Манхэттенский проект». Я не стану утомлять вас занудными методиками разделения изотопов и математическими выкладками теории цепной реакции деления. У нас с вами есть уран, плутоний, прочие материалы, инструкция по сборке и необходимая доля научного любопытства.

Все изотопы урана нестабильны в той или иной степени. Но уран-235 - на особом положении. При самопроизвольном распаде ядра урана-235 (его еще называют альфа-распадом) образуются два осколка (ядра других, гораздо более легких элементов) и несколько нейтронов (обычно 2-3). Если образовавшийся при распаде нейтрон ударится о ядро другого атома урана, будет обычное упругое соударение, нейтрон отскочит и продолжит поиски приключений. Но через какое-то время он растратит энергию (идеально упругие соударения бывают только у сферических коней в вакууме), и очередное ядро окажется ловушкой - нейтрон поглотится им. Кстати, такой нейтрон физики называюттепловым.

Посмотрите на перечень известных изотопов урана. Среди них нет изотопа с атомной массой 236. А знаете, почему? Такое ядро живет доли микросекунд, а затем распадается с выделением огромного количества энергии. Это называется вынужденный распад. Изотоп с таким временем жизни даже как-то неловко называть изотопом.

Энергия, выделившаяся при распаде ядра урана-235, - это кинетическая энергия осколков и нейтронов. Если подсчитать общую массу продуктов распада ядра урана, а затем сравнить ее с массой первоначального ядра, то окажется, что эти массы не совпадают - первоначальное ядро было больше. Это явление называется дефектом массы, а его объяснение заложено в формуле E0=mс2. Кинетическая энергия осколков, деленная на квадрат скорости света, в точности будет равна разности масс. Осколки тормозятся в кристаллической решетке урана, рождая рентгеновское излучение, а нейтроны, попутешествовав, поглощаются другими ядрами урана или покидают урановую отливку, где все события и происходят.

Если урановая отливка маленькая, то большая часть нейтронов покинет ее, не успев затормозиться. А вот если каждый акт вынужденного распада вызовет хотя бы еще один такой же акт за счет испущенного нейтрона - это уже самоподдерживающаяся цепная реакция деления.

Соответственно, если увеличивать размер отливки, все большее количество нейтронов станет причиной актов вынужденного деления. И в какой-то момент цепная реакция станет неуправляемой. Но это еще далеко не ядерный взрыв. Просто очень «грязный» термический взрыв, при котором выделится большое количество очень активных и ядовитых изотопов.

Вполне закономерный вопрос - сколько нужно урана-235, чтобы цепная реакция деления стала лавинообразной? На самом деле не все так просто. Здесь играют роль свойства расщепляющегося материала и отношение объема к поверхности. Представьте себе тонну урана-235 (сразу оговорюсь - это очень много), которая существует в виде тонкой и очень длинной проволоки. Да, нейтрон, летящий вдоль нее, разумеется, вызовет акт вынужденного распада. Но доля нейтронов, летящих вдоль проволоки, окажется настолько малой, что говорить о самоподдерживающейся цепной реакции просто смешно.

Поэтому условились считать критическую массу для сферической отливки. Для чистого урана-235 критическая масса составляет 50 кг (это шарик радиусом 9 см). Сами понимаете, такой шарик долго не просуществует, впрочем, как и те, кто его отлили.

Если же шарик меньшей массы окружить отражателем нейтронов (для него прекрасно подходит бериллий), а в состав шарика ввести материал - замедлитель нейтронов (вода, тяжелая вода, графит, тот же бериллий), то критическая масса станет гораздо меньшей. Применяя наиболее эффективные отражатели и замедлители нейтронов, можно довести критическую массу до 250 грамм. Этого, к примеру, можно достигнуть, если поместить в сферическую бериллиевую емкость насыщенный раствор соли урана-235 в тяжелой воде.

Критическая масса существует не только для урана-235. Есть еще ряд изотопов, способных к цепной реакции деления. Главное условие - продукты распада ядра должны вызывать акты распада других ядер.

Итак, у нас есть две полусферических отливки урана массой по 40 кг. Пока они находятся на почтительном отдалении друг от друга, все будет спокойно. А если начать их медленно сдвигать? Вопреки распространенному мнению, не произойдет ничего грибообразного. Просто куски по мере сближения начнут нагреваться, а затем, если вовремя не одуматься, раскаляться. В конце концов они просто расплавятся и растекутся, а все, кто двигал отливки, дадут дуба от облучения нейтронами. А те, кто с интересом наблюдал за этим, склеят ласты.

А если быстрее? Быстрее расплавятся. Еще быстрее? Еще быстрее расплавятся. Охладить? Да хоть в жидкий гелий опустите - толку не будет. А если выстрелить одним куском в другой? О! Момент истины. Мы только что придумали урановую пушечную схему. Впрочем, гордиться нам особенно нечем, эта схема - самая простая и безыскусная из всех возможных. Да и от полушарий придется отказаться. Они, как показала практика, не склонны ровненько слипаться плоскостями. Малейший перекос - и получится очень дорогостоящий «пук», после которого долго придется убирать.

Лучше сделаем короткую толстостенную трубу из урана-235 с массой 30-40 кг, к отверстию которой приставим высокопрочный стальной ствол того же калибра, заряженный цилиндром из такого же урана примерно такой же массы. Окружим урановую мишень бериллиевым отражателем нейтронов. Вот теперь, если пальнуть урановой «пулей» по урановой «трубе» - будет полная «труба». То есть будет ядерный взрыв. Только пальнуть надо по-серьезному, так, чтобы дульная скорость уранового снаряда была хотя бы 1 км/с. Иначе опять же будет «пук», но погромче. Дело в том, что при сближении снаряда и мишени они настолько разогреваются, что начинают интенсивно испаряться с поверхности, тормозясь встречными газовыми потоками. Более того, если скорость недостаточна, то есть шанс, что снаряд просто не долетит до мишени, а испарится по дороге.

Разогнать до такой скорости болванку массой в несколько десятков килограмм, причем на отрезке в пару метров - задача крайне непростая. Именно поэтому потребуется не порох, а мощная взрывчатка, способная создать в стволе должное давление газов за очень короткое время. А ствол потом чистить не придется, не беспокойтесь.

Бомба Mk-I «Little Boy», сброшенная на Хиросиму, была устроена именно по пушечной схеме.

Есть, конечно, незначительные детали, которые мы не учли в нашем проекте, но против самого принципа не погрешили совершенно.

Так. Урановую бомбу мы взорвали. Грибом полюбовались. Теперь будем взрывать плутониевую. Только не надо тащить сюда мишень, снаряд, ствол и прочий хлам. Этот номер с плутонием не пройдет. Даже если мы пальнем одним куском в другой со скоростью в 5 км/с, все равно надкритической сборки не выйдет. Плутоний-239 успеет разогреться, испариться и изгадить все вокруг. Его критическая масса - чуть больше 6 кг. Можете себе представить, насколько он активнее в плане захвата нейтронов.

Плутоний - металл необычный. В зависимости от температуры, давления и примесей он существует в шести модификациях кристаллической решетки. Есть даже такие модификации, в которых он сжимается при нагревании. Переходы из одной фазы в другую могут совершаться скачкообразно, при этом плотность плутония может меняться на 25%.Давайте, как все нормальные герои, пойдем в обход. Вспомним, что критическая масса определяется, в частности, отношением объема к поверхности. Ладно, у нас есть шарик докритической массы, имеющий минимальную поверхность при заданном объеме. Скажем, 6 килограмм. Радиус шарика - 4,5 см. А если этот шарик сжать со всех сторон? Плотность возрастет пропорционально кубу линейного сжатия, а поверхность уменьшится пропорционально его же квадрату. И вот что получится: атомы плутония уплотнятся, то есть тормозной путь нейтрона сократится, а значит, увеличится вероятность его поглощения. Но, опять же, сжать с нужной скоростью (порядка 10 км/с) все равно не выйдет. Тупик? А вот и нет.

При 300°С наступает так называемая дельта-фаза - самая рыхлая. Если легировать плутоний галлием, нагреть его до этой температуры, а затем медленно охладить, то дельта-фаза сможет существовать и при комнатной температуре. Но она не будет стабильной. При большом давлении (порядка десятков тысяч атмосфер) произойдет скачкообразный переход в очень плотную альфа-фазу.

Поместим плутониевый шарик в большой (диаметр 23 см) и тяжелый (120 кг) пустотелый шар из урана-238. Не переживайте, у него нет критической массы. Зато он прекрасно отражает быстрые нейтроны. А они нам еще пригодятся.Думаете, взорвали? Как бы не так. Плутоний - чертовски капризная сущность. Придется еще поработать. Сделаем две полусферы из плутония в дельта-фазе. Сформируем в центре сферическую полость. И в эту полость поместим квинтэссенцию ядерно-оружейной мысли - нейтронный инициатор. Это такой маленький пустотелый шарик из бериллия диаметром 20 и толщиной 6 мм. Внутри его - еще один шарик из бериллия диаметром 8 мм. На внутренней поверхности пустотелого шарика - глубокие бороздки. Все это щедро никелировано и покрыто золотом. В бороздки помещается полоний-210, который активно испускает альфа-частицы. Вот такое вот чудо технологии. Как оно работает? Секундочку. У нас еще есть несколько дел.

Окружим урановую оболочку еще одной, из сплава алюминия с бором. Ее толщина - около 13 см. Итого, наша «матрешка» теперь растолстела до полуметра и поправилась с 6 до 250 кг.

Теперь изготовим имплозионные «линзы». Представьте себе футбольный мяч. Классический, состоящий из 20 шестиугольников и 12 пятиугольников. Изготовим такой «мяч» из взрывчатки, а каждый из сегментов снабдим несколькими электродетонаторами. Толщина сегмента - около полуметра. При изготовлении «линз» есть тоже масса тонкостей, но если их описывать, то на все остальное не хватит места. Основное - максимальная точность линз. Малейшая погрешность - и всю сборку раздробит бризантным действием взрывчатки. Полная сборка теперь имеет диаметр около полутора метров и массу 2,5 тонны. Завершает конструкцию электрическая схема, задача которой - подорвать детонаторы в строго определенной последовательности с точностью до микросекунды.

Все. Перед нами - плутониевая имплозионная схема.

А теперь - самое интересное.

При детонации взрывчатка обжимает сборку, а алюминиевый «толкатель» не дает распространиться спаду взрывной волны, распространяющемуся вслед за ее фронтом внутрь. Пройдя через уран со встречной скоростью около 12 км/с, волна сжатия уплотнит и его, и плутоний. Плутоний при давлениях в зоне сжатия порядка сотен тысяч атмосфер (эффект фокусировки взрывного фронта) перейдет скачком в альфа-фазу. За 40 микросекунд описанная здесь сборка уран-плутоний станет не просто надкритической, а превышающей критическую массу в несколько раз.

Дойдя до инициатора, волна сжатия сомнет всю его конструкцию в монолит. При этом золото-никелевая изоляция разрушится, полоний-210 за счет диффузии проникнет в бериллий, испускаемые им альфа-частицы, проходящие через бериллий, вызовут колоссальный поток нейтронов, запускающих цепную реакцию деления во всем объеме плутония, а поток «быстрых» нейтронов, рожденный распадом плутония, вызовет взрыв урана-238. Готово, мы вырастили второй гриб, ничуть не хуже первого.

Пример плутониевой имплозионной схемы - бомба Mk-III «Fatman», сброшенная на Нагасаки.

Все описанные здесь ухищрения нужны для того, чтобы заставить вступить в реакцию максимальное количество атомных ядер плутония. Основная задача - как можно дольше удержать заряд в компактном состоянии, не дать ему разлететься плазменным облаком, в котором цепная реакция мгновенно прекратится. Здесь каждая выигранная микросекунда - прирост одной-двух килотонн мощности.

Термоядерная бомба

Существует расхожее мнение, что ядерная бомба - запал для термоядерной. В принципе, все гораздо сложнее, но суть ухвачена верно. Оружие, основанное на принципах термоядерного синтеза, позволило добиться такой мощности взрыва, которая ни при каких условиях не может быть достигнута цепной реакцией деления. Но единственный пока источник энергии, позволяющий «поджечь» термоядерную реакцию синтеза, - это ядерный взрыв.

Помните, как мы с вами «кормили» ядро водорода нейтронами? Так вот, если попытаться подобным образом соединить между собой два протона, ничего не выйдет. Протоны не удержатся вместе из-за кулоновских сил отталкивания. Либо они разлетятся, либо произойдет бета-распад и один из протонов станет нейтроном. А вот гелий-3 существует. Благодаря одному-единственному нейтрону, который делает протоны более уживчивыми друг с другом.

В принципе, на основании состава ядра гелия-3 можно сделать вывод, что из ядер протия и дейтерия можно вполне собрать одно ядро гелия-3. Теоретически это так, но такая реакция может идти только в недрах больших и горячих звезд. Более того, в недрах звезд даже из одних протонов можно собрать гелий, превращая часть их в нейтроны. Но это уже вопросы астрофизики, а достижимый для нас вариант - это слить два ядра дейтерия или дейтерий и тритий.

Для слияния ядер необходимо одно очень специфическое условие. Это очень высокая (109 К) температура. Только при средней кинетической энергии ядер в 100 килоэлектронвольт они способны сблизиться на расстояние, при котором сильное взаимодействие начинает преодолевать кулоновское.

Вполне законный вопрос - зачем городить этот огород? Дело в том, что при синтезе легких ядер выделяется энергия порядка 20 МэВ. Разумеется, при вынужденном делении ядра урана эта энергия в 10 раз больше, но есть один нюанс - при самых больших ухищрениях урановый заряд мощностью даже в 1 мегатонну невозможен. Даже для более совершенной плутониевой бомбы достижимый выход энергии - не более чем 7-8 килотонн с одного килограмма плутония (при теоретическом максимуме 18 килотонн). И не забывайте о том, что ядро урана почти в 60 раз тяжелее двух ядер дейтерия. Если считать удельный выход энергии, то термоядерный синтез заметно впереди.

И еще - для термоядерного заряда не существует никаких ограничений по критической массе. У него попросту ее нет. Есть, правда, другие ограничения, но о них - ниже.

В принципе, запустить термоядерную реакцию как источник нейтронов достаточно несложно. Гораздо труднее запустить ее как источник энергии. Здесь мы сталкиваемся с так называемым критерием Лоусона, который определяет энергетическую выгодность термоядерной реакции. Если произведение плотности реагирующих ядер и времени их удержания на расстоянии слияния больше, чем 1014 сек/см3, энергия, даваемая синтезом, превысит энергию, вводимую в систему.

Именно достижению этого критерия и были посвящены все термоядерные программы.

Первая схема термоядерной бомбы, пришедшая в голову Эдварду Теллеру, была чем-то сродни попытке создать плутониевую бомбу по пушечной схеме. То есть вроде бы все правильно, но не работает. Устройство «классического супера» - жидкий дейтерий, в который погружена плутониевая бомба, - было и вправду классическим, но далеко не супер.

Мысль о взрыве ядерного заряда в среде жидкого дейтерия оказалась тупиковой изначально. При таких условиях мало-мальский выход энергии термоядерного синтеза мог быть достигнут при подрыве ядерного заряда мощностью 500 кт. А о достижении критерия Лоусона вообще говорить не приходилось.

Идея окружить ядерный заряд-триггер слоями термоядерного топлива, перемежающегося ураном-238 в качестве теплоизолятора и усилителя взрыва, Теллеру тоже приходила в голову. Да и не только ему. Первые советские термоядерные бомбы были построены именно по этой схеме. Принцип был достаточно простым: ядерный заряд прогревает термоядерное горючее до температуры начала синтеза, а рождающиеся при синтезе быстрые нейтроны взрывают слои урана-238. Однако ограничение оставалось прежним - при той температуре, которую мог обеспечить ядерный триггер, в реакцию синтеза могла вступить только смесь дешевого дейтерия и невероятно дорогого трития.

Позже Теллера посетила мысль использовать соединение дейтерид лития-6. Такое решение позволило отказаться от дорогих и неудобных криогенных емкостей с жидким дейтерием. К тому же в результате облучения нейтронами литий-6 превращался в гелий и тритий, вступавший с дейтерием в реакцию синтеза.

Недостатком этой схемы оказалась ограниченная мощность - в реакцию синтеза успевала вступить лишь ограниченная часть термоядерного горючего, окружавшего триггер. Остальное, сколько бы его ни было, шло на ветер. Максимальная мощность заряда, полученная при использовании «слойки», равнялась 720 кт (британская бомба Orange Herald). Судя по всему, это был «потолок».

Об истории разработки схемы Теллера-Улама мы уже говорили. Теперь давайте разберемся в технических деталях этой схемы, которую называют также «двухступенчатой» или «схемой обжатия излучением».

Наша задача - нагреть термоядерное топливо и удержать его в определенном объеме, чтобы выполнить критерий Лоусона. Оставляя в стороне американские упражнения с криогенными схемами, возьмем в качестве термоядерного топлива уже известный нам дейтерид лития-6.

В качестве материала контейнера для термоядерного заряда выберем уран-238. Контейнер - цилиндрической формы. По оси контейнера внутри его расположим цилиндрический стержень из урана-235, имеющий субкритическую массу.

На заметку: нашумевшая в свое время нейтронная бомба - это та же схема Теллера-Улама, но без уранового стержня по оси контейнера. Смысл в том, чтобы обеспечить мощный поток быстрых нейтронов, но не допустить выгорания всего термоядерного топлива, на которое станут расходоваться нейтроны.

Остальное свободное пространство контейнера заполним дейтеридом лития-6. Разместим контейнер в одном из концов корпуса будущей бомбы (это у нас будет вторая ступень), а в другом его конце смонтируем обычный плутониевый заряд мощностью в несколько килотонн (первая ступень). Между ядерным и термоядерным зарядами установим перегородку из урана-238, предотвращающую преждевременный разогрев дейтерида лития-6. Заполним остальное свободное пространство внутри корпуса бомбы твердым полимером. В принципе, термоядерная бомба готова.

При подрыве ядерного заряда 80% энергии выделяется в виде рентгеновского излучения. Скорость его распространения намного превышает скорость распространения осколков деления плутония. Через сотые доли микросекунды урановый экран испаряется, и рентгеновское излучение начинает интенсивно поглощаться ураном контейнера термоядерного заряда. В результате так называемой абляции (уноса массы с поверхности нагретого контейнера) возникает реактивная сила, сжимающая контейнер в 10 раз. Именно этот эффект называется радиационной имплозией или обжатием излучением. При этом плотность термоядерного топлива возрастает в 1000 раз. В результате колоссального давления радиационной имплозии центральный стержень из урана-235 также подвергается обжатию, хотя и в меньшей степени, и переходит в надкритическое состояние. К этому времени термоядерный блок подвергается бомбардировке быстрыми нейтронами ядерного взрыва. Пройдя через дейтерид лития-6, они замедляются и интенсивно поглощаются урановым стержнем.

В стержне начинается цепная реакция деления, быстро приводящая к ядерному взрыву внутри контейнера. Поскольку дейтерид лития-6 при этом подвергается абляционному обжатию снаружи и давлению ядерного взрыва изнутри, его плотность и температура еще больше возрастает. Этот момент - начало запуска реакции синтеза. Дальнейшее ее поддержание определяется тем, как долго контейнер будет удерживать термоядерные процессы внутри себя, не давая выхода тепловой энергии наружу. Именно этим и определяется достижение критерия Лоусона. Выгорание термоядерного топлива идет от оси цилиндра к его краю. Температура фронта горения достигает 300 миллионов кельвин. Полное развитие взрыва вплоть до выгорания термоядерного топлива и разрушения контейнера занимает пару сотен наносекунд - в двадцать миллионов раз быстрее, чем вы прочитали эту фразу.

Надежное срабатывание двухступенчатой схемы зависит от точной сборки контейнера и предотвращения его преждевременного разогрева.

Мощность термоядерного заряда для схемы Теллера-Улама зависит от мощности ядерного триггера, обеспечивающего эффективное обжатие излучением. Впрочем, сейчас существуют и многоступенчатые схемы, в которых энергия предыдущей ступени используется для обжатия последующей. Пример трехступенчатой схемы - уже упомянутая 100-мегатонная «кузькина мать».

Часть нейтронов, освобождаемых при реакции деления, вылетает из сферы реакции или же захватывается, не производя деления. Если создать условия, при которых скорость потери нейтронов будет больше скорости высвобождения новых нейтронов при делении, то цепная реакция при этих условиях перестанет быть самоподдерживающейся, то есть прекратится. При этом будет выделено некоторое количество энергии, но оно будет недостатoчным, a скорость высвобождения новых нейтронов будет слишком мала, чтобы вызвaть эффeктивный взрыв. Поэтому для осуществления ядерного взрыва необходимо создать условия, при которых потеря нейтронов была бы минимальной. B связи c этим особенно важное значение имеют нейтроны, которые вылетают из массы делящегося вещества и не принимают участия в реакции деления.

Вылет нейтронов из сферы реакции происходит через наружную поверхность массы урана (или плутония). Следовательно, скорость потери нейтронов за счёт их вылета из массы делящегося вещества будет определяться величиною поверхности этой массы. C другой стороны, процесс деления, в результате которого освобождается много новых нейтронов, происходит во всей массе делящегося вещества, и поэтому скорость освобождения этих нейтронов зависит от величины этой массы. При увеличении объёма делящегося вещества отношение величины его поверхности к массе уменьшается; следовательно, отношение числа потерянных (вылетевших) нейтронов к числу освобожденных при реакции деления новых нейтронов при этом будет уменьшаться.

Это положение легче понять, если рассмотреть рисунок справа, на котором изображены два сферических куска делящегося вещества, один из которых больше другого; в обоих случаях процeсс деления начинается одним нейтроном, изображённом на рисунке в виде точки в окружности. Предполагается, что при каждом акте деления освобождается три нейтрона, то есть один нейтрон захва-

Если масса урана или плутония мала, то eсть если отношение величины поверхности к объёму велико, то число нейтронов, потерянных в результате вылета, окажется настолько большим, что создание цепной ядерной реакции деления, a следовательно, и осуществление ядерного взрывa окажутся невозможными. Но с увеличением массы урана или плутония отпосительная потеря нейтронов уменьшается, и наступает момент, когда цепная реакция может стать самоподдерживающейся. Количество дeлящегося вещества, соответствующее этому моменту, называется критической массой.

Таким образом, для того чтобы произошёл ядерный взрыв, необходимо, чтобы в ядерном боeприпасе содержалось достаточное количество урана или плутония, превосходящее критическую массу при данных условиях. В действительности критическая масса зависит, кроме прочего, от формы куска делящегoся вещества, его составa и степени загрязнения посторонними примесями, которые могут поглощать нейтроны, не подвергаясь делению. Окружая делящееся вещество соответствующей оболочкой - отражателем нейтронов, можно уменьшить потерю нейтронов за счёт их вылета, a следовательно, и уменьшить величину критической массы. Кроме того, элементы, обладающие высокой плотностью и хорошей отражающей способностью для нейтронов высоких энергий, обеспечивают также некоторую инерционность делящегося вещества, задерживая его расширение в момент взрывa. Отражатель нейтронов благодаря своему экранирующему действию и инерциальным свойствам позволяет более эффективно использовать делящееся вещество в ядерном боеприпасе.

2024 litera-globus.ru. literaglobus - Образовательный портал.