Делать уравнения по химии. Как составить химическое уравнение: правила, примеры

Глава 2. Основы химического языка и первоначальные сведения о классификации индивидуальных химических веществ (продолжение)

2.4. Схемы и уравнения химических реакций

При химических реакциях одни вещества превращаются в другие. Вспомним известную нам реакцию серы с кислородом. И в ней из одних веществ (исходных веществ или реагентов ) образуются другие (конечные вещества или продукты реакции ).

Для записи и передачи информации о химических реакциях используются схемы и уравнения реакций .

Схема реакции показывает, какие вещества вступают в реакцию и какие образуются в результате реакции. И в схемах, и в уравнениях реакций вещества обозначаются их формулами.

Схема горения серы записывается так: S 8 + O 2 SO 2 .

Это означает, что при взаимодействии серы с кислородом протекает химическая реакция, в результате которой образуется диоксид серы (сернистый газ). Все вещества здесь молекулярные, поэтому при записи схемы использованы молекулярные формулы этих веществ. То же относится и к схеме другой реакции – реакции горения белого фосфора:

P 4 + O 2 P 4 O 10 .

При нагревании до 900 o С карбоната кальция (мела, известняка) протекает химическая реакция: карбонат кальция превращается в оксид кальция (негашеную известь) и диоксид углерода (углекислый газ) по схеме:

CaCO 3 CaO + CO 2 .

Для указания на то, что процесс происходит при нагревании, схему (и уравнение) обычно дополняют знаком " t" , а то, что углекислый газ при этом улетучивается, обозначают стрелкой, направленной вверх:

CaCO 3 CaO + CO 2 .

Карбонат кальция и оксид кальция – вещества немолекулярные, поэтому в схеме использованы их простейшие формулы, отражающие состав их формульных единиц. Для молекулярного вещества – углекислого газа – использована молекулярная формула.

Рассмотрим схему реакции, протекающей при взаимодействия пентахлорида фосфора с водой: PCl 5 +H 2 O H 3 PO 4 + HCl.
Из схемы видно, что при этом образуется фосфорная кислота и хлороводород.

Иногда для передачи информации о химической реакции бывает достаточно и краткой схемы этой реакции, например:

S 8 SO 2 ; P 4 P 4 O 10 ; CaCO 3 CaO.

Естественно, что краткой схеме может соответствовать и несколько разных реакций.

Для любой химической реакции справедлив один из важнейших законов химии:
При протекании химических реакций атомы не появляются, не исчезают и не превращаются друг в друга.

При записи уравнений химических реакций, кроме формул веществ, используются коэффициенты. Как и в алгебре, коэффициент "1" в уравнении химической реакции не ставится, но подразумевается. Рассмотренные нами реакции описываются следующими уравнениями:

1S 8 + 8O 2 = 8SO 2 , или S 8 + 8O 2 = 8SO 2 ;
1P 4 + 5O 2 = 1P 4 O 10 , или P 4 + 5O 2 = P 4 O 10 ;
1CaCO 3 = 1CaO + 1CO 2 , или CaCO 3 = CaO + CO 2 ;
1PCl 5 + 4H 2 O = 1H 3 PO 4 + 5HCl, или PCI 5 + 4H 2 O = H 3 PO 4 + 5HCI.

Знак равенства между правой и левой частью уравнения означает, что число атомов каждого элемента, входящих в состав исходных веществ, равно числу атомов этого элемента, входящих в продукты реакциии .

Коэффициенты в уравнении химической реакции показывают отношение между числом реагирующих и числом образующихся молекул (для немолекулярных веществ – числом формульных единиц) соответствующих веществ. Так, для реакции, протекающей при взаимодействии пентахлорида фосфора с водой

и так далее (всего 6 пропорций).Обычно отдельный коэффициент в уравнении реакции не имеет никакого смысла, но в некоторых случаях может означать число молекул или формульных единиц данного вещества.Примеры информации, даваемой схемами и уравнениями реакций.
1-й пример. Реакция горения метана в кислороде (или на воздухе):
СН 4 + O 2 CO 2 + H 2 O (схема),
СН 4 + 2O 2 = CO 2 + 2Н 2 О (уравнение).

Схема химической реакции показывает, что (1) в реакции, протекающей между метаном и кислородом, образуются углекислый газ и вода.

Уравнение реакции добавляет, что (2) число молекул метана, вступившего в реакцию, относится к числу молекул вступившего в реакцию кислорода, как 1 к 2, и так далее, то есть:

Кроме того, уравнение показывает, что одна молекула метана реагирует с двумя молекулами кислорода, при этом образуется одна молекула углекислого газа и две молекулы воды.

2-й пример. Восстановление железа водородом из его оксида:
Fe 2 O 3 + H 2 Fe + H 2 O (схема),
Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 О (уравнение).

Схема химической реакции показывает, что (1) при взаимодействии оксида железа(Fe 2 O 3) с водородом (которое происходит при нагревании) образуются железо и вода.

Уравнение добавляет к этому, что (2) число формульных единиц оксида железа, вступившего в реакцию, относится к числу вступивших в реакцию молекул водорода, как 1 к 3, и так далее. То есть:

Кроме того уравнение показывает, что одна формульная единица оксида железа реагирует с тремя молекулами водорода, при этом образуется два атома железа и три молекулы воды.

Как вы узнаете в дальнейшем, уравнения реакций дают нам и другую количественную информацию.

Карбонат кальция – CaCO 3 . Бесцветное немолекулярное вещество, нерастворимое в воде. Такие широко известные горные породы, как мрамор и известняк, состоят в основном из карбоната кальция. Мел, которым вы пишете на доске, – тоже карбонат кальция: многие морские организмы (радиолярии и др.) строят свои панцири из этого вещества; за длительное время на дне океана формируются залежи мела, представляющего собой огромные слои спрессованных панцирей этих организмов.
Карбонат кальция не обладает способностью плавиться – при нагревании он разлагается. Горные породы, образуемые карбонатом кальция, используются в строительстве в качестве отделочных материалов, строительного камня, а также для производства негашеной извести (CaO). В металлургии карбонат кальция в виде известняка добавляют в руду для лучшего образования шлаков.

РЕАГЕНТЫ, ПРОДУКТЫ РЕАКЦИИ, СХЕМЫ И УРАВНЕНИЯ РЕАКЦИЙ, КОЭФФИЦИЕНТЫ В УРАВНЕНИЯХ РЕАКЦИЙ

1.Запишите уравнения, соответствующие следующим схемам реакций:
а) Na+ Cl 2 NaCl; б) CuO + Al Al 2 O 3 + Сu;
в) N 2 O N 2 + O 2 ; г)NaOH + H 2 SO 4 Na 2 SO 4 + H 2 O.
2.Какую информацию передают составленными вами уравнениями реакций (среди приведенных веществ молекулярными являются Cl 2 , N 2 О, N 2 , O 2 , H 2 SO 4 и H 2 O; остальные – немолекулярные).

2.5. Первоначальные сведения о классификации чистых химических веществ

Вы уже познакомились в той или иной степени примерно с пятьюдесятью индивидуальными (чистыми) химическими веществами. Всего же науке известно несколько миллионов таких веществ. Чтобы не утонуть в этом " море" веществ, их необходимо систематизировать и прежде всего классифицировать – классифицировать более подробно, чем мы делали это в параграфе 1.4 (рис. 1.3).
Вещества отличаются друг от друга своими свойствами, а свойства веществ определяются составом и строением. Поэтому важнейшие признаки, по которым классифицируют вещества – состав, строение и свойства.
По составу, а точнее, по числу входящих в их состав элементов, вещества делятся на простые и сложные (это вы уже знаете). Сложных веществ в сотни тысяч раз больше, чем простых, поэтому среди них выделяют бинарные вещества (бинарные соединения).

Схема этой классификации приведена на рисунке 2.1.
Признаком, по которому проводят дальнейшую классификацию веществ, являются их свойства.
Начнем с простых веществ.
По физическим свойствам простые вещества делятся на металлы и неметаллы .
Характерные физические свойства металлов:
1) высокая электропроводность (способность хорошо проводить электрический ток),
2) высокая теплопроводность (способность хорошо проводить теплоту),
3) высокая пластичность (ковкость, изгибаемость, вытягиваемость).

Кроме того все металлы обладают " металлическим" блеском. Но следует помнить, что таким блеском обладают не только металлы, но и часть неметаллов, и даже некоторые сложные вещества. Блестит кристаллический кремний, одна из полиморфных модификаций мышьяка, теллур, а это всё – неметаллы. Из сложных веществ – пирит FeS 2 , халькопирит CuFeS 2 и некоторые другие.

Основой систематизации химических элементов, простых веществ и соединений служит ЕСТЕСТВЕННАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, открытая в 1869 году выдающимся русским химиком Дмитрием Ивановичем Менделеевым (1834 –1907) и названная им " периодической системой" . Усовершенствованная многими поколениями ученых, эта система продолжает называться " периодической" , хотя это и не совсем правильно. Графически система химических элементов выражается в виде таблицы элементов (рис. 2.2); со строением этой таблицы вы подробно познакомитесь, изучая главу 6. Пока же посмотрим, где в таблице элементов расположены элементы, образующие неметаллы , а где – элементы, образующие металлы . Оказывается, элементы, образующие неметаллы, группируются в правом верхнем углу таблицы элементов. Все остальные элементы – элементы, образующие металлы. Причину этого вы узнаете, изучив строение атомов и химические связи.

При комнатной температуре металлы – твердые вещества (исключение – ртуть, ее температура плавления – 39 o С).
В отличие от металлов, неметаллы не обладают каким-либо определенным набором характерных физических характеристик. Даже агрегатное состояние у них может быть разным. При комнатной температуре газообразныдвенадцать простых веществ (Н 2 , Не, N 2 , O 2 , O 3 , F 2 , Nе, Cl 2 , Аr, Кr, Хе, Rn), жидкость одна (Br 2), а твердых веществ – более десяти (В, С (алмаз) , С (графит) , Si, P 4 , S 8 , As, Se, Те, I 2 и др.). По своим химическим свойствам большинство металлов сильно отличается от большинства неметаллов, но резкой границы между ними нет.
Многие простые вещества при определенных условиях могут вступать в реакции друг с другом, например:

2H 2 + O 2 = 2H 2 O; 2Na + Cl 2 = 2NaCl; 2Ca + O 2 = 2CaO.

В результате таких реакций образуются бинарные соединения.

В принципе, в состав бинарного соединения могут входить любые элементы (кроме гелия и неона). Но часто один из этих элементов – кислород, водород или один из галогенов (фтор, хлор, бром или йод). Такие вещества называются кислородными соединениями , водородными соединениями или галогенидами . Примеры бинарных соединений: CaO, Al 2 O 3 , КН, HCl, АlI 3 , СаС 2 .

Примеры кислородных соединений: H 2 O (вода), H 2 O 2 (пероксид водорода), Na 2 O (оксид натрия), Na 2 O 2 (пероксид натрия), СО 2 (диоксид углерода), OF 2 (фторид кислорода). Большинство кислородных соединений является оксидами . Чем оксиды отличаются от остальных кислородных соединений, вы узнаете позже.
Примеры оксидов:
Li 2 O – оксид лития, CO 2 – диоксид углерода, CaO – оксид кальция, SiO 2 – диоксид кремния, Al 2 O 3 – оксид алюминия, Н 2 О – вода,
MnO 2 – диоксид марганца, SO 3 –триоксид серы.

Примеры водородных соединений: NаН – гидрид натрия, H 2 O – вода, КН – гидрид калия, НСl – хлороводород, СаH 2 – гидрид кальция,
NH 3 – аммиак, BaH 2 – гидрид бария, CH 4 – метан.

Примеры галогенидов: CaF 2 – фторид кальция, BF 3 – трифторид бора, NaCl – хлорид натрия,PCl 5 – пентахлорид фосфора, КВr – бромид калия, НВr – бромоводород, AlI 3 – йодид алюминия, HI – йодоводород.
Примеры названий бинарных соединений приведены в таблице 6.

Таблица 6. Примеры названий бинарных соединений.

Обратите внимание, что все эти названия содержат суффикс -ид . Таким способом можно назвать любое бинарное соединение, кроме бинарных соединений элементов, образующих металлы (интерметаллических соединений ). Вместе с тем, некоторые бинарные соединения имеют свои традиционные названия (вода, аммиак, хлороводород, метан и некоторые другие).

Среди бинарных соединений на Земле чаще всего встречаются оксиды. Это вызвано тем, что каждый второй атом в земной коре (в атмосфере, гидросфере и литосфере) – атом кислорода. А среди оксидов самое распространенное вещество – вода. Одна из причин этого в том, что водород – также один из самых распространенных элементов в земной коре.

Теперь – о более сложных соединениях. Пусть в состав соединения входят три элемента. Таких соединений очень много. Какие из них наиболее важные? Конечно, кислородсодержащие соединения. И прежде всего, те, в состав которых входит водород. Важность этих соединений вызвана еще и тем, что в результате химических реакций между оксидами и водой получаются как раз такие вещества, например:

СаО + H 2 O = Ca(OH) 2 ; P 4 O 10 + 6H 2 O = 4H 3 PO 4 ;
Li 2 O + H 2 O = 2LiOH; SO 3 + H 2 O = H 2 SO 4 .

Образующиеся в результате этих реакций вещества называются гидроксидами . Название происходит от сочетания слов " гидрат оксида" , то есть соединение оксида с водой.

Существует много гидроксидов, в том числе и такие, которые не образуются при непосредственном взаимодействии оксида с водой, например: H 2 SiO 3 , Al(OH) 3 , Cu(OH) 2 и другие. Эти вещества тоже называются гидроксидами потому, что при нагревании они разлагаются на оксид и воду.

Вообще-то почти все гидроксиды при нагревании разлагаются, образуя соответствующий оксид и воду, например:
Cu(OH) 2 = CuO + H 2 O при 100 o С;
Сa(OH) 2 = CaO +H 2 O при 500 o С;
H 2 SO 4 = SO 3 + H 2 O при 450 o С;
2Аl(ОН) 3 = Al 2 O 3 + 3H 2 O при 200 o С;
H 2 SiO 3 = SiO 2 + H 2 O ниже 100 o С.
Но такие гидроксиды, как, например, NaОН и КОН, не разлагаются даже при нагревании до 1500 o С.

Примеры названий некоторых гидроксидов приведены в таблице 7 .

Название

Название

NаОН Гидроксид натрия H 2 SO 4 Серная кислота
КОН Гидроксид калия H 2 SO 3 Сернистая кислота
Ca(OH) 2 Гидроксид кальция HNO 3 Азотная кислота
Ba(OH) 2 Гидроксид бария HNO 2 Азотистая кислота
Аl(ОН) 3 Гидроксид алюминия H 3 PO 4 Фосфорная кислота
Cu(OH) 2 Гидроксид меди H 2 CO 3 Угольная кислота
Zn(OH) 2 Гидроксид цинка H 2 SiO 3 Кремниевая кислота

Обратите внимание, что в левой половине таблицы собраны гидроксиды элементов, образующих металлы (название начинается со слова " гидроксид "), а в правой – гидроксиды элементов, образующих неметаллы (название содержит слово " кислота "). Разная форма названий связана с тем, что эти гидроксиды очен ь сильно отличаются по своим химическим свойствам. Например, их растворы по-разному изменяют окраску веществ, называемых индикаторами (точнее, кислотно -основными индикаторами ). Такими веществами-индикаторами являются красители, содержащиеся в чернике, малине, черной смородине, краснокочанной капусте и даже в чае. В лаборатории в качестве индикаторов обычно используют лакмус (природный краситель), метилоранж и фенолфталеин (оба синтетические). Так, лакмус в растворах, содержащих кислоты, окрашивается в красный цвет, а в растворах, содержащих растворимые гидроксиды металлов (щелочи ) – в синий. Цвета других индикаторов приведены в приложении 3. Кислоты имеют кислый вкус, но пробовать их нельзя ни в коем случае, так как большинство из них ядовиты, или обладают обжигающим действием.

Из гидроксидов, приведенных в таблице 6, щелочами являются NaOH, КОН и Ba(OH) 2 . Малорастворимый Са(ОН) 2 тоже меняет окраску индикаторов. Из приведенных в этой же таблице кислот не меняет окраску индикаторов только кремниевая кислота, в частности потому, что она, в отличие от остальных кислот, нерастворима в воде.

Между собой кислоты, как правило, не реагируют, а с гидроксидами металлов вступают в реакции, например:
H 2 SO 4 + 2КОН = К 2 SО 4 + H 2 О;
2HNO 3 + Ва(ОН) 2 = Ва(NO 3) 2 + 2H 2 O;
Н 3 РО 4 + 3NаОН = Nа 3 РО 4 + 3Н 2 О.

Кроме воды продуктами этих реакций являются соли – сложные вещества еще одного важнейшего класса. В результате реакции ни кислоты, ни щелочи в растворе не остается, и раствор становится нейтральным , поэтому такие реакции называют реакциями нейтрализации .

Обратите внимание на суффиксы в названиях солей, приведенных в таблице 8.

Таблица 8.Соли и их названия

Название

Название

К 2 SO 3 Сульфит калия Na 2 CO 3 Карбонат натрия
CaSO 4 Сульфат кальция МgСО 3 Карбонат магния
Al 2 (SO 4) 3 Сульфат алюминия K 2 SiO 3 Силикат калия
Ba(NO 2) 2 Нитрит бария K 3 PO 4 Фосфат калия
Ba(NO 3) 2 Нитрат бария Ca 3 (PO 4) 2 Фосфат кал ьция

Некоторые гидроксиды из всех остальных гидроксидов реагируют только с кислотами. Такие гидроксиды называются основаниями. Те же гидроксиды, которые реагируют и с кислотами, и с ос нованиями (щелочами), называются амфотерными гидроксидами. Основаниям соответствуют основные оксиды , кислотам – кислотные оксиды, а амфотерным гидроксидам – амфотерные оксиды. Примеры различных по своему химическому поведению оксидов приведены в таблице 9.

Таблица 9.Примеры основных, амфотерных и кислотных оксидов, а также соответствующие им гидроксидов.

Основные

Амфотерные

Кислотные

Гидроксиды

Гидроксиды

Гидроксиды

*)Приведена идеализированная формула гидроксида
**)Существует только в водном растворе

Соли образуются не только при реакциях кислот с основаниями, но и при взаимодействии металлов с кислотами:
Mg + H 2 SO 4 = MgSO 4 + H 2 O,
2Al + 6HCl = 2AlCl 3 + 3H 2­ ,
а также при взаимодействии основных оксидов с кислотными оксидами Li 2 O + CO 2 = Li 2 СО 3 ,
основных оксидов с кислотами FeO + H 2 SO 4 = FeSO 4 + Н 2 О
и кислотных оксидов с основаниями SO 2 + 2NаОН = Na 2 SO 3 + H 2 O.
В аналогичные реакции вступают также амфотерные оксиды и гидроксиды.
А теперь вернемся к знакомому вам делению веществ на молекулярные и немолекулярные, то есть к классификации их по типу строения. Как распределяются молекулярные и немолекулярные вещества по различным классам сложных веществ, показано в таблице 10.

Таблица 10. Тип строения некоторых сложных веществ

Класс соединений

Молекулярное строение

Немолекулярное строение

Основные и амфотерные оксиды

Кислотные оксиды

CO 2 , N 2 O 3 , N 2 O 5 , P 4 O 10 , SO 2 , SO 3

B 2 O 3 , SiO 2 , CrO 3

Основные и амфотерные гидроксиды

Кислотные гидроксиды (кислоты)

H 3 BO 3 , H 2 CO 3 , HNO 2 , HNO 3 , H 3 PO 4 , H 2 SO 3 , H 2 SO 4

CH 4 , NH 3 , H 2 O, H 2 S, HF, HCl

Галогениды

BF 3 , SiCl 4 , CBr 4 , C 2 I 6 , NCl 3

NaF, КС1, СаBr 2 , MgI 2 , BaF 2

Как видите, химические вещества – очень разные, разные по составу, по своим физическим характеристикам, разные по химическим свойствам. Но ответить на вопросы, почему данное вещество имеет такой состав, почему оно обладает такими характеристиками, почему оно реагирует именно с этими веществами и как оно с ними реагирует, вы пока не можете. Вспомните, что свойства вещества определяются его составом и строением. Поэтому для ответа на эти вопросы нужно прежде всего изучить, как вещества устроены, то есть – строение вещества.

Диоксид углерода – CO 2 , или углекислый газ. Молекулярное вещество, кислотный оксид. Несмотря на то, что его объемная доля в земной атмосфере всего 0,03 – 0,04 %, углекислый газ – один из существеннейших компонентов воздуха, и его роль в нашей жизни трудно переоценить. Он непосредственно участвует в двух важнейших природных процессах: дыхании и фотосинтезе. Например, за один час взрослый человек выдыхает около 20 литров углекислого газа. Повышение его содержания губительно для человека и животных: при объемной доле 0,2 – 0,15 % человек теряет сознание. Атмосферный СО 2 предохраняет нашу планету от переохлаждения, так как способен удерживать тепловое излучение, исходящее от поверхности Земли, но его избыток может вызвать так называемый " парниковый эффект" . Твердый СО 2 – " сухой лед" – используется для охлаждения: например, куски льда у продавщицы мороженого есть не что иное, как " сухой лед"

Оксид кальция – CaO , или негашеная (жженая) известь – основный оксид белого цвета, гигроскопичен (поглощает влагу). Это вещество энергично реагирует с водой, образуя "гашеную известь" – гидроксид кальция. Получают этот оксид обжигом различных горных пород, образованных карбонатом кальция, отсюда и название "жженая известь". При попадании на кожу вызывает ожоги. Особенно опасно попадание его в глаза.

Гидроксид кальция – Ca(OH) 2 , или гашеная известь, – основание белого цвета, малорастворимое в воде. Получают его так называемым гашением – добавлением воды к оксиду кальция. В реакции выделяется так много тепла, что реакционная смесь вскипает. Гашеную известь используют в строительстве как связующий материал и как сырье для изготовления белого силикатного кирпича, а также в производстве минеральных удобрений.

ЕСТЕСТВЕННАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, МЕТАЛЛЫ, НЕМЕТАЛЛЫ, БИНАРНЫЕ СОЕДИНЕНИЯ, КИСЛОРОДНЫЕ СОЕДИНЕНИЯ, ВОДОРОДНЫЕ СОЕДИНЕНИЯ, ГАЛОГЕНИДЫ, ГИДРИДЫ, ОКСИДЫ, ГИДРОКСИДЫ, КИСЛОТЫ, ОСНОВАНИЯ, СОЛИ, ЩЕЛОЧИ, АМФОТЕРНЫЕ ГИДРОКСИДЫ, ИНДИКАТОРЫ, РЕАКЦИЯ НЕЙТРАЛИЗАЦИИ, ОСНОВНЫЕ ОКСИДЫ, КИСЛОТНЫЕ ОКСИДЫ, АМФОТЕРНЫЕ ОКСИДЫ а) Fe(OH) 2 ; б) Pb(OH) 2 ; в) Fe(ОН) 3 ; г) Сr(ОН) 3 .

7.Составьте уравнения реакций по следующим схемам реакций:
Li 2 O + P 4 O 1 0 Li 3 PO 4 ; MnSO 4 + NаОН M n(OH) 2 + Na 2 SO 4 ;
Fe 3 O 4 + Al Al 2 O 3 + Fe; La 2 (SO 4) 3 + KOH La(OH) 3 + K 2 SO 4 ;
Fe 2 O 3 + Mg MgO + Fe; Ag NO 3 + NaO H Ag 2 O +NaNO 3 + H 2 O.
К каким классам относятся исходные и конечные вещества этих реакций?

1. Взаимодействие растворов кислот и оснований с индикаторами.
2. Химические свойства кислот и оснований.
3. Химические свойства металлов.
4. Химические свойства оксидов.

Схема химической реакции.

Существует несколько способов записи химических реакций. Co «словесной» схемой реакции вы ознакомились в § 13.

Приводим еще один пример:

сера + кислород -> сернистый газ.

Ломоносов и Лавуазье открыли закон сохранения массы веществ при химической реакции. Он формулируется так:

Объясним, почему массы пепла и прокаленной меди отличаются от масс бумаги и меди до ее нагревания.

В процессе горения бумаги принимает участие кислород, который содержится в воздухе (рис. 48, а).

Следовательно, в реакцию вступают два вещества. Кроме пепла, образуются углекислый газ и вода (в виде пара), которые попадают в воздух и рассеиваются.



Рис. 48. Реакции бумаги (а) и меди (б) с кислородом

Антуан-Лоран Лавуазье (1743-1794)

Выдающийся французский химик, один из основателей научной химии. Академик Парижской академии наук. Ввел в химию количественные (точные) методы исследования. Экспериментально определил состав воздуха и доказал, что горение - это реакция вещества с кислородом, а вода - соединение Гидрогена с Оксигеном (1774- 1777).

Составил первую таблицу простых веществ (1789), предложив фактически классификацию химических элементов. Независимо от М. В. Ломоносова открыл закон сохранения массы веществ при химических реакциях.


Рис. 49. Опыт, подтверждающий закон Ломоносова - Лавуазье:а - начало опыта; б - окончание опыта

Их масса превышает массу кислорода. Поэтому масса пепла меньше массы бумаги.

При нагревании меди кислород воздуха «соединяется» с ней (рис. 48, б). Металл превращается в вещество черного цвета (его формула - CuO, а на­ звание - купрум(П) оксид). Очевидно, что масса продукта реакции должна превышать массу меди.

Прокомментируйте опыт, изображенный на рисунке 49, и сделайте вывод.

Закон как форма научных знаний.

Открытие законов в химии, физике, других науках происходит после проведения учеными многих экспериментов и анализа полученных результатов.

Закон - это обобщение объективных, независимых от человека связей между явлениями, свойствами и т. д.

Закон сохранения массы веществ при химической реакции - важнейший закон химии. Он распространяется на все превращения веществ, которые происходят и в лаборатории, и в природе.

Химические законы дают возможность прогнозировать свойства веществ и протекание химических реакций, регулировать процессы в химической технологии.

Для того чтобы объяснить закон, выдвигают гипотезы, которые проверяют с помощью соответствующих экспериментов. Если одна из гипотез подтверждается, на ее основе создают теорию. В старших классах вы ознакомитесь с несколькими теориями, которые разработали ученые-химики.

Общая масса веществ при химической реакции не изменяется потому, что атомы химических элементов во время реакции не возникают и не исчезают, а происходит только их перегруппировка. Другими словами,
количество атомов каждого элемента до реакции равно количеству его атомов после реакции. На это указывают схемы реакций, приведенные в начале параграфа. Заменим в них стрелки между левыми и правыми частями на знаки равенства:

Такие записи называют химическими уравнениями.

Химическое уравнение - это запись химической реакции с помощью формул реагентов и продуктов, которая согласуется с законом сохранения массы веществ.

Существует много схем реакций^ которые не соответствуют закону Ломоносова - Лавуазье.

Например, схема реакции образования воды:

H 2 + O 2 -> H 2 O.

В обеих частях схемы содержится одинаковое количество атомов Гидрогена, но разное количество атомов Оксигена.

Превратим эту схему в химическое уравнение.

Для того чтобы в правой части было 2 атома Оксигена, поставим перед формулой воды коэффициент 2:

H 2 + O 2 -> H 2 O.

Теперь справа стало четыре атома Гидрогена. Чтобы такое же количество атомов Гидрогена было и в левой части, запишем перед формулой водорода коэффициент 2. Получаем химическое уравнение:

2Н 2 + O 2 = 2Н 2 0.

Таким образом, чтобы превратить схему реак ции в химическое уравнение, нужно подобрать коэффициенты для каждого вещества (в случае необходимости), записать их перед химическими формулами и заменить стрелку на знак равенства.

Возможно, кто-то из вас составит такое уравнение: 4Н 2 + 20 2 = 4Н 2 0. В нем левая и правая части содержат одинаковые количества атомов каждого элемента, но все коэффициенты можно уменьшить, разделив на 2. Это и следует сделать.

Это интересно

Химическое уравнение имеет много общего с математическим.

Ниже представлены различные способы записи рассмотренной реакции.

Превратите схему реакции Cu + O 2 -> CuO в химическое уравнение.

Выполним более сложное задание: превратим в химическое уравнение схему реакции

В левой части схемы - I атом Алюминия, а в правой - 2. Поставим перед формулой металла коэффициент 2:

Атомов Сульфура справа в три раза больше, чем слева. Запишем в левой части перед формулой соединения Сульфура коэффициент 3:

Теперь в левой части количество атомов Гидрогена равно 3 2 = 6, а в правой - только 2. Для того чтобы и справа их было 6, поставим перед формулой водорода коэффициент 3 (6: 2 = 3):

Сопоставим количество атомов Оксигена в обеих частях схемы. Они одинаковы: 3 4 = 4 * 3. Заменим стрелку на знак равенства:

Выводы

Химические реакции записывают с помощью схем реакций и химических уравнений.

Схема реакции содержит формулы реагентов и продуктов, а химическое уравнение - еще и коэффициенты.

Химическое уравнение согласуется с законом сохранения массы веществ Ломоносова - Лавуазье:

масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции.

Атомы химических элементов во время реакций не появляются и не исчезают, а происходит лишь их перегруппировка.

?
105. Чем отличается химическое уравнение от схемы реакции?

106. Расставьте пропущенные коэффициенты в записях реакций:

107. Превратите в химические уравнения такие схемы реакций:

108. Составьте формулы продуктов реакций и соответствующие химические уравнения:

109. Вместо точек запишите формулы простых веществ и составьте хими­ ческие уравнения:

Примите во внимание, что бор и углерод состоят из атомов; фтор, хлор, водород и кислород - из двухатомных молекул, а фосфор (белый) - из четырехатомных молекул.

110. Прокомментируйте схемы реакций и превратите их в химические уравнения:

111. Какая масса негашеной извести образовалась при длительном прока­ ливании 25 г мела, если известно, что выделилось 11 г углекислого газа?

Попель П. П., Крикля Л. С., Хімія: Підруч. для 7 кл. загальноосвіт. навч. закл. - К.: ВЦ «Академія», 2008. - 136 с.: іл.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Запишите химическое уравнение. В качестве примера рассмотрим следующую реакцию:

  • C 3 H 8 + O 2 –> H 2 O + CO 2
  • Эта реакция описывает горение пропана (C 3 H 8) в присутствии кислорода с образованием воды и диоксида углерода (углекислого газа).

Запишите количество атомов каждого элемента. Сделайте это для обеих частей уравнения. Обратите внимание на подстрочные индексы возле каждого элемента, чтобы определить общее количество атомов. Запишите символ каждого входящего в уравнение элемента и отметьте соответствующее количество атомов.

  • Например, в правой части рассматриваемого уравнения в результате сложения получаем 3 атома кислорода.
  • В левой части имеем 3 атома углерода (C 3), 8 атомов водорода (H 8) и 2 атома кислорода (O 2).
  • В правой части имеем 1 атом углерода (C), 2 атома водорода (H 2) и 3 атома кислорода (O + O 2).
  • Оставьте водород и кислород на потом, так как они входят в состав нескольких соединений в левой и правой части. Водород и кислород входят в состав нескольких молекул, поэтому лучше сбалансировать их в последнюю очередь.

    • Прежде чем балансировать водород и кислород, придется еще раз пересчитать атомы, так как могут понадобиться дополнительные коэффициенты, чтобы сбалансировать другие элементы.
  • Начните с наименее часто встречающегося элемента. Если необходимо сбалансировать несколько элементов, выберите такой, который входит в состав одной молекулы реагентов и одной молекулы продуктов реакции. Таким образом, сначала следует сбалансировать углерод.

  • Для баланса добавьте коэффициент перед единственным атомом углерода. Поставьте коэффициент перед единственным атомом углерода в правой части уравнения, чтобы сбалансировать его с 3 атомами углерода в левой части.

    • C 3 H 8 + O 2 –> H 2 O + 3 CO 2
    • Коэффициент 3 перед углеродом в правой части уравнения указывает на то, что получается три атома углерода, которые соответствуют тремя атомам углерода, входящим в молекулу пропана в левой части.
    • В химическом уравнении можно менять коэффициенты перед атомами и молекулами, однако подстрочные индексы должны оставаться неизменными.
  • После этого сбалансируйте атомы водорода. После того как вы уравняли количество атомов углерода в левой и правой части, несбалансированными остались водород и кислород. Левая часть уравнения содержит 8 атомов водорода, столько же их должно быть и справа. Добейтесь этого с помощью коэффициента.

    • C 3 H 8 + O 2 –> 4 H 2 O + 3CO 2
    • Мы добавили коэффициент 4 в правой части, так как подстрочный индекс показывает, что у нас уже есть два атома водорода.
    • Если умножить коэффициент 4 на подстрочный индекс 2, получится 8.
    • В результате в правой части получается 10 атомов кислорода: 3x2=6 атомов в трех молекулах 3CO 2 и еще четыре атома в четырех молекулах воды.
  • Химия – это наука о веществах, их свойствах и превращениях .
    То есть, если с окружающими нас веществами ничего не происходит, то это не относится к химии. Но что значит, «ничего не происходит»? Если в поле нас вдруг застала гроза, и мы все промокли, как говорится «до нитки», то это ли не превращение: ведь одежда была сухой, а стала мокрой.

    Если, к примеру взять железный гвоздь, обработать его напильником, а затем собрать железные опилки (Fe ) , то это ли так же не превращение: был гвоздь – стал порошок. Но если после этого собрать прибор и провести получение кислорода (О 2) : нагреть перманганат калия (КМпО 4) и собрать в пробирку кислород, а затем в неё поместить раскалённые «до красна» эти железные опилки, то они вспыхнут ярким пламенем и после сгорания превратятся в порошок бурого цвета. И это так же превращение. Так где же химия? Несмотря на то, что в этих примерах меняется форма (железный гвоздь) и состояние одежды (сухая, мокрая) – это не превращения. Дело в том, что сам по себе гвоздь как был веществом (железо), так им и остался, несмотря на другую свою форму, а воду от дождя как впитала наша одежда, так потом его и испарила в атмосферу. Сама вода не изменилась. Так что же такое превращения с точки зрения химии?

    Превращениями с точки зрения химии называются такие явления, которые сопровождаются изменением состава вещества. Возьмём в качестве примера тот же гвоздь. Не важно, какую форму он принял после обработки напильником, но после того как собранные от него железные опилки поместили в атмосферу кислорода - он превратился в оксид железа (Fe 2 O 3 ) . Значит, что-то всё-таки изменилось? Да, изменилось. Было вещество гвоздь, но под воздействием кислорода сформировалось новое вещество – оксид элемента железа. Молекулярное уравнение этого превращения можно отобразить следующими химическими символами:

    4Fe + 3O 2 = 2Fe 2 O 3 (1)

    Для непосвящённого в химии человека сразу возникают вопросы. Что такое «молекулярное уравнение», что такое Fe? Почему поставлены цифры «4», «3», «2»? Что такое маленькие цифры «2» и «3» в формуле Fe 2 O 3 ? Это значит, наступило время во всём разобраться по порядку.

    Знаки химических элементов.

    Несмотря на то, что химию начинают изучать в 8-м классе, а некоторые даже раньше, многим известен великий русский химик Д. И. Менделеев. И конечно же, его знаменитая «Периодическая система химических элементов». Иначе, проще, её называют «Таблица Менделеева».

    В этой таблице, в соответствующем порядке, располагаются элементы. К настоящему времени их известно около 120. Названия многих элементов нам были известны ещё давно. Это: железо, алюминий, кислород, углерод, золото, кремний. Раньше мы не задумываясь применяли эти слова, отождествляя их с предметами: железный болт, алюминиевая проволока, кислород в атмосфере, золотое кольцо и т.д. и т.д. Но на самом деле все эти вещества (болт, проволока, кольцо) состоят из соответствующих им элементов. Весь парадокс состоит в том, что элемент нельзя потрогать, взять в руки. Как же так? В таблице Менделеева они есть, а взять их нельзя! Да, именно так. Химический элемент – это абстрактное (то есть отвлечённое) понятие, и используется в химии, впрочем как и в других науках, для расчётов, составления уравнений, при решении задач. Каждый элемент отличается от другого тем, что для него характерна своя электронная конфигурация атома. Количество протонов в ядре атома равно количеству электронов в его орбиталях. К примеру, водород – элемент №1. Его атом состоит из 1-го протона и 1-го электрона. Гелий – элемент №2. Его атом состоит из 2-х протонов и 2-х электронов. Литий – элемент №3. Его атом состоит из 3-х протонов и 3-х электронов. Дармштадтий – элемент №110. Его атом состоит из 110-и протонов и 110-и электронов.

    Каждый элемент обозначается определённым символом, латинскими буквами, и имеет определённое прочтение в переводе с латинского. Например, водород имеет символ «Н» , читается как «гидрогениум» или «аш». Кремний имеет символ «Si» читается как «силициум». Ртуть имеет символ «Нg» и читается как «гидраргирум». И так далее. Все эти обозначения можно найти в любом учебнике химии за 8-й класс. Для нас сейчас главное уяснить то, что при составлении химических уравнений, необходимо оперировать указанными символами элементов.

    Простые и сложные вещества.

    Обозначая единичными символами химических элементов различные вещества (Hg ртуть , Fe железо , Cu медь , Zn цинк , Al алюминий ) мы по сути обозначаем простые вещества, то есть вещества, состоящие из атомов одного вида (содержащие одно и то же количество протонов и нейтронов в атоме). Например, если во взаимодействие вступают вещества железо и сера, то уравнение примет следующую форму записи:

    Fe + S = FeS (2)

    К простым веществам относятся металлы (Ва, К, Na, Mg, Ag), а так же неметаллы (S, P, Si, Cl 2 , N 2 , O 2 , H 2). Причём следует обратить
    особое внимание на то, что все металлы обозначаются единичными символами: К, Ва, Са, Аl, V, Mg и т.д., а неметаллы – либо простыми символами: C,S,P или могут иметь различные индексы, которые указывают на их молекулярное строение: H 2 , Сl 2 , О 2 , J 2 , P 4 , S 8 . В дальнейшем это будет иметь очень большое значение при составлении уравнений. Совсем не трудно догадаться, что сложными веществами являются вещества, образованные из атомов разного вида, например,

    1). Оксиды:
    оксид алюминия Al 2 O 3 ,

    оксид натрия Na 2 O,
    оксид меди CuO,
    оксид цинка ZnO,
    оксид титана Ti 2 O 3 ,
    угарный газ или оксид углерода (+2) CO,
    оксид серы (+6) SO 3

    2). Основания:
    гидроксид железа (+3) Fe(OH) 3 ,
    гидроксид меди Cu(OH) 2 ,
    гидроксид калия или щёлочь калия КOH,
    гидроксид натрия NaOH.

    3). Кислоты:
    соляная кислота HCl,
    сернистая кислота H 2 SO 3 ,
    азотная кислота HNO 3

    4). Соли:
    тиосульфат натрия Na 2 S 2 O 3 ,
    сульфат натрия или глауберова соль Na 2 SO 4 ,
    карбонат кальция или известняк СаCO 3,
    хлорид меди CuCl 2

    5). Органические вещества:
    ацетат натрия СН 3 СООNa,
    метан СН 4 ,
    ацетилен С 2 Н 2 ,
    глюкоза С 6 Н 12 О 6

    Наконец, после того как мы выяснили структуру различных веществ, можно приступать к составлению химических уравнений.

    Химическое уравнение.

    Само слово «уравнение» производное от слова «уравнять», т.е. разделить нечто на равные части. В математике уравнения составляют чуть ли не самую сущность этой науки. К примеру, можно привести такое простое уравнение, в котором левая и правая части будут равны «2»:

    40: (9 + 11) = (50 х 2) : (80 – 30);

    И в химических уравнениях тот же принцип: левая и правая части уравнения должны соответствовать одинаковым количествам атомов, участвующим в них элементов. Или, если приводится ионное уравнение, то в нём число частиц так же должно соответствовать этому требованию. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков. Химическое уравнение по своей сути отражает ту или иную химическую реакцию, то есть процесс взаимодействия веществ, в процессе которых возникают новые вещества. Например, необходимо написать молекулярное уравнение реакции, в которой принимают участие хлорид бария ВаСl 2 и серная кислота H 2 SO 4. В результате этой реакции образуется нерастворимый осадок – сульфат бария ВаSO 4 и соляная кислота НСl:

    ВаСl 2 + H 2 SO 4 = BaSO 4 + 2НСl (3)

    Прежде всего необходимо уяснить, что большая цифра «2», стоящая перед веществом НСlназывается коэффициентом, а малые цифры «2», «4» под формулами ВаСl 2 , H 2 SO 4 ,BaSO 4 называются индексами. И коэффициенты и индексы в химических уравнениях выполняют роль множителей, а не слагаемых. Что бы правильно записать химическое уравнение, необходимо расставить коэффициенты в уравнении реакции . Теперь приступим к подсчёту атомов элементов в левой и правой частях уравнения. В левой части уравнения: в веществе ВаСl 2 содержатся 1 атом бария (Ва), 2 атома хлора (Сl). В веществе H 2 SO 4: 2 атома водорода (Н), 1 атом серы (S) и 4 атома кислорода (О) . В правой части уравнения: в веществе BaSO 4 1 атом бария (Ва) 1 атом серы (S) и 4 атома кислорода (О), в веществе НСl: 1 атом водорода (Н) и 1 атом хлора (Сl). Откуда следует, что в правой части уравнения количество атомов водорода и хлора вдвое меньше, чем в левой части. Следовательно, перед формулой НСl в правой части уравнения необходимо поставить коэффициент «2». Если теперь сложить количества атомов элементов, участвующих в данной реакции, и слева и справа, то получим следующий баланс:

    В обеих частях уравнения количества атомов элементов, участвующих в реакции, равны, следовательно оно составлено правильно.

    Химические уравнение и химические реакции

    Как мы уже выяснили, химические уравнения являются отражением химических реакций. Химическими реакциями называются такие явления, в процессе которых происходит превращение одних веществ в другие. Среди их многообразия можно выделить два основных типа:

    1). Реакции соединения
    2). Реакции разложения.

    В подавляющем своём большинстве химические реакции принадлежат к реакциям присоединения, поскольку с отдельно взятым веществом редко могут происходить изменения в его составе, если оно не подвергается воздействиям извне (растворению, нагреванию, действию света). Ничто так не характеризует химическое явление, или реакцию, как изменения, происходящие при взаимодействии двух и более веществ. Такие явления могут осуществляться самопроизвольно и сопровождаться повышением или понижением температуры, световыми эффектами, изменением цвета, образованием осадка, выделением газообразных продуктов, шумом.

    Для наглядности приведём несколько уравнений, отражающих процессы реакций соединения, в процессе которых получаются хлорид натрия (NaCl), хлорид цинка (ZnCl 2), осадок хлорида серебра (AgCl), хлорид алюминия (AlCl 3)

    Cl 2 + 2Nа = 2NaCl (4)

    СuCl 2 + Zn= ZnCl 2 + Сu (5)

    AgNO 3 + КCl = AgCl + 2KNO 3 (6)

    3HCl + Al(OH) 3 = AlCl 3 + 3Н 2 О (7)

    Cреди реакций соединения следует особым образом отметить следующие: замещения (5), обмена (6), и как частный случай реакции обмена – реакцию нейтрализации (7).

    К реакциям замещения относятся такие, при осуществлении которой атомы простого вещества замещают атомы одного из элементов в сложном веществе. В примере (5) атомы цинка замещают из раствора СuCl 2 атомы меди, при этом цинк переходит в растворимую соль ZnCl 2 , а медь выделяется из раствора в металлическом состоянии.

    К реакциям обмена относятся такие реакции, при которых два сложных вещества обмениваются своими составными частями. В случае реакции (6) растворимые соли AgNO 3 и КCl при сливании обоих растворов образуют нерастворимый осадок соли AgCl. При этом они обмениваются своими составными частями – катионами и анионами. Катионы калия К + присоединяются к анионам NO 3 , а катионы серебра Ag + – к анионам Cl - .

    К особому, частному случаю, реакций обмена относится реакция нейтрализации. К реакциям нейтрализации относятся такие реакции, в процессе которых кислоты реагируют с основаниями, в результате образуется соль и вода. В примере (7) соляная кислота HCl , реагируя с основанием Al(OH) 3 образует соль AlCl 3 и воду. При этом катионы алюминия Al 3+ от основания обмениваются с анионами Сl - от кислоты. В итоге происходит нейтрализация соляной кислоты.

    К реакциям разложения относятся такие, при котором из одного сложного образуются два и более новых простых или сложных веществ, но более простого состава. В качестве реакций можно привести такие, в процессе которых разлагаются 1). Нитрат калия (КNO 3) с образованием нитрита калия (КNO 2) и кислорода (O 2); 2). Перманганат калия (KMnO 4): образуются манганат калия (К 2 МnO 4), оксид марганца (MnO 2) и кислород (O 2); 3). Карбонат кальция или мрамор ; в процессе образуются углекислый газ (CO 2) и оксид кальция (СаО)

    2КNO 3 = 2КNO 2 + O 2 (8)
    2KMnO 4 = К 2 МnO 4 + MnO 2 + O 2 (9)
    СаCO 3 = CaO + CO 2 (10)

    В реакции (8) из сложного вещества образуется одно сложное и одно простое. В реакции (9) – два сложных и одно простое. В реакции (10) – два сложных вещества, но более простых по составу

    Разложению подвергаются все классы сложных веществ:

    1). Оксиды: оксид серебра 2Ag 2 O = 4Ag + O 2 (11)

    2). Гидроксиды: гидроксид железа 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O (12)

    3). Кислоты: серная кислота H 2 SO 4 = SO 3 + H 2 O (13)

    4). Соли: карбонат кальция СаCO 3 = СаO + CO 2 (14)

    5). Органические вещества: спиртовое брожение глюкозы

    С 6 Н 12 О 6 = 2С 2 Н 5 ОH + 2CO 2 (15)

    Согласно другой классификации, все химические реакции можно разделить на два типа: реакции, идущие с выделением теплоты, их называют экзотермические, и реакции, идущие с поглощением теплоты – эндотермические. Критерием таких процессов является тепловой эффект реакции. Как правило, к экзотермическим реакциям относятся реакции окисления, т.е. взаимодействия с кислородом, например сгорание метана :

    СН 4 + 2O 2 = СО 2 + 2Н 2 О + Q (16)

    а к эндотермическим реакциям – реакции разложения, уже приводимые выше (11) – (15). Знак Q в конце уравнения указывает на то, выделяется ли теплота в процессе реакции (+Q) или поглощается (-Q):

    СаCO 3 = СаO+CO 2 - Q (17)

    Можно так же рассматривать все химические реакции по типу изменения степени окисления, участвующих в их превращениях элементов. К примеру, в реакции (17) участвующие в ней элементы не меняют свои степени окисления:

    Са +2 C +4 O 3 -2 = Са +2 O -2 +C +4 O 2 -2 (18)

    А в реакции (16) элементы меняют свои степени окисления:

    2Mg 0 + O 2 0 = 2Mg +2 O -2

    Реакции такого типа относятся к окислительно-восстановительным . Они будут рассматриваться отдельно. Для составления уравнений по реакциям такого типа необходимо использовать метод полуреакций и применять уравнение электронного баланса.

    После приведения различных типов химических реакций, можно приступать к принципу составлений химических уравнений, иначе, подбору коэффициентов в левой и правой их частях.

    Механизмы составления химических уравнений.

    К какому бы типу ни относилась та или иная химическая реакция, её запись (химическое уравнение) должна соответствовать условию равенства количества атомов до реакции и после реакции.

    Существуют такие уравнения (17), которые не требуют уравнивания, т.е. расстановки коэффициентов. Но в большинстве случаях, как в примерах (3), (7), (15), необходимо предпринимать действия, направленные на уравнивание левой и правой частей уравнения. Какими же принципами необходимо руководствоваться в таких случаях? Существует ли какая ни будь система в подборе коэффициентов? Существует, и не одна. К таковым системам относятся:

    1). Подбор коэффициентов по заданным формулам.

    2). Составление по валентностям реагирующих веществ.

    3). Составление по степеням окисления реагирующих веществ.

    В первом случае полагается, что нам известны формулы реагирующих веществ как до реакции, так и после. К примеру, дано следующее уравнение:

    N 2 + О 2 →N 2 О 3 (19)

    Принято считать, что пока не установлено равенство между атомами элементов до реакции и после, знак равенства (=) в уравнении не ставится, а заменяется стрелкой (→). Теперь приступим к собственно уравниванию. В левой части уравнения имеются 2 атома азота (N 2) и два атома кислорода (О 2), а в правой – два атома азота (N 2) и три атома кислорода (О 3). По количеству атомов азота его уравнивать не надо, но по кислороду необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало три атома. Составим следующую схему:

    до реакции после реакции
    О 2 О 3

    Определим наименьшее кратное между данными количествами атомов, это будет «6».

    О 2 О 3
    \ 6 /

    Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение:

    N 2 + 3О 2 →N 2 О 3

    Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

    N 2 + 3О 2 → 2N 2 О 3

    Количества атомов кислорода и в левой и в правой частях уравнения стали равны, соответственно по 6 атомов:

    Но количество атомов азота в обеих частях уравнения не будут соответствовать друг другу:

    В левой – два атома, в правой – четыре атома. Следовательно, что бы добиться равенства, необходимо удвоить количество азота в левой части уравнения, поставив коэффициент «2»:

    Таким образом, равенство по азоту соблюдено и в целом, уравнение примет вид:

    2N 2 + 3О 2 → 2N 2 О 3

    Теперь в уравнении можно вместо стрелки поставит знак равенства:

    2N 2 + 3О 2 = 2N 2 О 3 (20)

    Приведём другой пример. Дано следующее уравнение реакции:

    Р + Cl 2 → РCl 5

    В левой части уравнения имеется 1 атом фосфора (Р) и два атома хлора (Cl 2), а в правой – один атом фосфора (Р) и пять атомов кислорода (Cl 5). По количеству атомов фосфора его уравнивать не надо, но по хлору необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало пять атома. Составим следующую схему:

    до реакции после реакции
    Cl 2 Cl 5

    Определим наименьшее кратное между данными количествами атомов, это будет «10».

    Cl 2 Cl 5
    \ 10 /

    Разделим это число в левой части уравнения по хлору на «2». Получим число «5», поставим его в решаемое уравнение:

    Р + 5Cl 2 → РCl 5

    Так же разделим число «10» для правой части уравнения на «5». Получим число «2», так же поставим его в решаемое уравнение:

    Р + 5Cl 2 → 2РCl 5

    Количества атомов хлора и в левой и в правой частях уравнения стали равны, соответственно по 10 атомов:

    Но количество атомов фосфора в обеих частях уравнения не будут соответствовать друг другу:

    Следовательно, что бы добиться равенства, необходимо удвоить количество фосфора в левой части уравнения, поставив коэффициент «2»:

    Таким образом, равенство по фосфору соблюдено и в целом, уравнение примет вид:

    2Р + 5Cl 2 = 2РCl 5 (21)

    При составлении уравнений по валентностям необходимо дать определение валентности и установить значения для наиболее известных элементов. Валентность – это одно из ранее применяемых понятий, в настоящее время в ряде школьных программ не используется. Но при его помощи легче объяснить принципы составления уравнений химических реакций. Под валентностью понимают число химических связей, которые тот или иной атом может образовывать с другим, или другими атомами . Валентность не имеет знака (+ или -) и обозначается римскими цифрами, как правило, над символами химических элементов, например:

    Откуда берутся эти значения? Как их применять при составлении химических уравнений? Числовые значения валентностей элементов совпадают с их номером группы Периодической системы химических элементов Д. И. Менделеева (Таблица 1).

    Для других элементов значения валентностей могут иметь иные значения, но никогда не больше номера группы, в которой они расположены. Причём для чётных номеров групп (IV и VI) валентности элементов принимают только чётные значения, а для нечётных – могут иметь как чётные, так и нечётные значения (Таблица.2).

    Конечно же, в значениях валентностей для некоторых элементов имеются исключения, но в каждом конкретном случае эти моменты обычно оговариваются. Теперь рассмотрим общий принцип составления химических уравнений по заданным валентностям для тех или иных элементов. Чаще всего данный метод приемлем в случае составления уравнений химических реакций соединения простых веществ, например, при взаимодействии с кислородом (реакции окисления ). Допустим, необходимо отобразить реакцию окисления алюминия . Но напомним, что металлы обозначаются единичными атомами (Al), а неметаллы, находящиеся в газообразном состоянии – с индексами «2» - (О 2). Сначала напишем общую схему реакции:

    Al + О 2 →AlО

    На данном этапе ещё не известно, какое правильное написание должно быть у оксида алюминия. И вот именно на данном этапе нам на помощь придёт знание валентностей элементов. Для алюминия и кислорода проставим их над предполагаемой формулой этого оксида:

    III II
    Al О

    После чего «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

    III II
    Al 2 О 3

    Состав химического соединения Al 2 О 3 определён. Дальнейшая схема уравнения реакции примет вид:

    Al+ О 2 →Al 2 О 3

    Остаётся только уравнять левую и правую его части. Поступим таким же способом, как в случае составления уравнения (19). Количества атомов кислорода уравняем, прибегая к нахождению наименьшего кратного:

    до реакции после реакции

    О 2 О 3
    \ 6 /

    Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение. Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

    Al + 3О 2 → 2Al 2 О 3

    Что бы добиться равенства по алюминию, необходимо скорректировать его количество в левой части уравнения, поставив коэффициент «4»:

    4Al + 3О 2 → 2Al 2 О 3

    Таким образом, равенство по алюминию и кислороду соблюдено и в целом, уравнение примет окончательный вид:

    4Al + 3О 2 = 2Al 2 О 3 (22)

    Применяя метод валентностей, можно прогнозировать, какое вещество образуется в процессе химической реакции, как будет выглядеть его формула. Допустим, в реакцию соединения вступили азот и водород с соответствующими валентностями III и I. Напишем общую схему реакции:

    N 2 + Н 2 → NН

    Для азота и водорода проставим валентности над предполагаемой формулой этого соединения:

    Как и прежде «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

    III I
    N Н 3

    Дальнейшая схема уравнения реакции примет вид:

    N 2 + Н 2 → NН 3

    Уравнивая уже известным способом, через наименьшее кратное для водорода, равное «6»,получим искомые коэффициенты, и уравнение в целом:

    N 2 + 3Н 2 = 2NН 3 (23)

    При составлении уравнений по степеням окисления реагирующих веществ необходимо напомнить, что степенью окисления того или иного элемента называется число принятых или отданных в процессе химической реакции электронов. Степень окисления в соединениях в основном, численно совпадает со значениями валентностей элемента. Но отличаются знаком. Например, для водорода валентность равна I, а степень окисления (+1) или (-1). Для кислорода валентность равна II, а степень окисления (-2). Для азота валентности равны I,II,III,IV,V, а степени окисления (-3), (+1), (+2), (+3), (+4), (+5) и т.д. Степени окисления наиболее часто применяемых в уравнениях элементов, приведены в таблице 3.

    В случае реакций соединения принцип составления уравнений по степеням окисления такой же, как и при составлении по валентностям. Например, приведём уравнение реакции окисления хлора кислородом, в которой хлор образует соединение со степенью окисления +7. Запишем предполагаемое уравнение:

    Cl 2 + О 2 → ClО

    Поставим над предполагаемым соединением ClО степени окисления соответствующих атомов:

    Как и в предыдущих случаях установим, что искомая формула соединения примет вид:

    7 -2
    Cl 2 О 7

    Уравнение реакции примет следующий вид:

    Cl 2 + О 2 → Cl 2 О 7

    Уравнивая по кислороду, найдя наименьшее кратное между двумя и семи, равное «14», установим в итоге равенство:

    2Cl 2 + 7О 2 = 2Cl 2 О 7 (24)

    Несколько иной способ необходимо применять со степенями окисления при составлении реакций обмена, нейтрализации, замещения. В ряде случаев предоставляется затруднительным узнать: какие соединения образуются при взаимодействии сложных веществ?

    Как узнать: что получится в процессе реакции?

    Действительно, как узнать: какие продукты реакции могут возникнут в ходе конкретной реакции? К примеру, что образуется при взаимодействии нитрата бария и сульфата калия?

    Ва(NО 3) 2 + К 2 SO 4 → ?

    Может быть ВаК 2 (NО 3) 2 + SO 4 ? Или Ва + NО 3 SO 4 + К 2 ? Или ещё что-то? Конечно же, в процессе этой реакции образуются соединения: ВаSO 4 и КNО 3 . А откуда это известно? И как правильно написать формулы веществ? Начнём с того, что чаще всего упускается из вида: с самого понятия «реакция обмена». Это значит, что при данных реакциях вещества меняются друг с другом составными частями. Поскольку реакции обмена в большинстве своём осуществляются межу основаниями, кислотами или солями, то частями, которыми они будут меняться, являются катионы металлов (Na + , Mg 2+ ,Al 3+ ,Ca 2+ ,Cr 3+), ионов Н + или ОН - , анионов – остатков кислот, (Cl - , NO 3 2- ,SO 3 2- , SO 4 2- , CO 3 2- , PO 4 3-). В общем виде реакцию обмена можно привести в следующей записи:

    Kt1An1 + Kt2An1 = Kt1An2 + Kt2An1 (25)

    Где Kt1 и Kt2 – катионы металлов (1) и (2), а An1 и An2 – соответствующие им анионы (1) и (2). При этом обязательно надо учитывать, что в соединениях до реакции и после реакции на первом месте всегда устанавливаются катионы, а анионы – на втором. Следовательно, если в реакцию вступит хлорид калия и нитрат серебра , оба в растворённом состоянии

    KCl + AgNO 3 →

    то в процессе её образуются вещества KNO 3 и AgClи соответствующее уравнение примет вид:

    KCl + AgNO 3 =KNO 3 + AgCl (26)

    При реакциях нейтрализации протоны от кислот (Н +) будут соединяться с анионами гидроксила (ОН -) с образованием воды (Н 2 О):

    НCl + КОН = КCl + Н 2 O (27)

    Степени окисления катионов металлов и заряды анионов кислотных остатков указаны в таблице растворимости веществ (кислот, солей и оснований в воде). По горизонтали приведены катионы металлов, а по вертикали – анионы кислотных остатков.

    Исходя из этого, при составлении уравнения реакции обмена, необходимо вначале в левой его части установить степени окисления принимающих в этом химическом процессе частиц. Например, требуется написать уравнение взаимодействия между хлоридом кальция и карбонатом натрия.Составим исходную схему этой реакции:

    СаCl + NаСО 3 →

    Са 2+ Cl - + Nа + СО 3 2- →

    Совершив уже известное действие «крест»-на-«крест», определим реальные формулы исходных веществ:

    СаCl 2 + Nа 2 СО 3 →

    Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ:

    СаCl 2 + Nа 2 СО 3 → СаСО 3 + NаCl

    Над их катионами и анионами проставим соответствующие заряды:

    Са 2+ СО 3 2- + Nа + Cl -

    Формулы веществ записаны правильно, в соответствии с зарядами катионов и анионов. Составим полное уравнение, уравняв левую и правую его части по натрию и хлору:

    СаCl 2 + Nа 2 СО 3 = СаСО 3 + 2NаCl (28)

    В качестве другого примера приведём уравнение реакции нейтрализации между гидроксидом бария и ортофосфорной кислотой:

    ВаОН + НРО 4 →

    Над катионами и анионами проставим соответствующие заряды:

    Ва 2+ ОН - + Н + РО 4 3- →

    Определим реальные формулы исходных веществ:

    Ва(ОН) 2 + Н 3 РО 4 →

    Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ, учитывая, что при реакции обмена одним из веществ обязательно должна быть вода:

    Ва(ОН) 2 + Н 3 РО 4 → Ва 2+ РО 4 3- + Н 2 O

    Определим правильную запись формулы соли, образовавшейся в процессе реакции:

    Ва(ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Уравняем левую часть уравнения по барию:

    3Ва (ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Поскольку в правой части уравнения остаток ортофосфорной кислоты взят дважды, (РО 4) 2 , то слева необходимо также удвоить её количество:

    3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

    Осталось привести в соответствие количество атомов водорода и кислорода в правой части у воды. Так как слева общее количество атомов водорода равно 12, то справа оно так же должно соответствовать двенадцати, поэтому перед формулой воды необходимо поставить коэффициент «6» (поскольку в молекуле воды уже имеется 2 атома водорода). По кислороду так же соблюдено равенство: слева 14 и справа 14. Итак, уравнение имеет правильную форму записи:

    3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + 6Н 2 O (29)

    Возможность осуществления химических реакций

    Мир состоит из великого множества веществ. Неисчислимо так же количество вариантов химических реакций между ними. Но можем ли мы, написав на бумаге то или иное уравнение утверждать, что ему будет соответствовать химическая реакция? Существует ошибочное мнение, что если правильно расставить коэффициенты в уравнении, то оно будет осуществимо и на практике. Например, если взять раствор серной кислоты и опустить в него цинк , то можно наблюдать процесс выделения водорода:

    Zn+ H 2 SO 4 = ZnSO 4 + H 2 (30)

    Но если в этот же раствор опустить медь, то процесс выделения газа наблюдаться не будет. Реакция не осуществима.

    Cu+ H 2 SO 4 ≠

    В случае, если будет взята концентрированная серная кислота, она будет реагировать с медью:

    Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2Н 2 O (31)

    В реакции (23) между газами азотом и водородом наблюдается термодинамическое равновесие, т.е. сколько молекул аммиака NН 3 образуется в единицу времени, столько же их и распадётся обратно на азот и водород. Смещение химического равновесия можно добиться повышением давления и понижением температуры

    N 2 + 3Н 2 = 2NН 3

    Если взять раствор гидроксида калия и прилить к нему раствор сульфата натрия , то никаких изменений наблюдаться не будет, реакция будет не осуществима:

    КОН + Na 2 SO 4 ≠

    Раствор хлорида натрия при взаимодействии с бромом не будет образовывать бром, несмотря на то, что данная реакция может быть отнесена к реакции замещения:

    NаCl + Br 2 ≠

    В чём же причины таких несоответствий? Дело в том, что оказывается недостаточно только правильно определять формулы соединений , необходимо знать специфику взаимодействия металлов с кислотами, умело пользоваться таблицей растворимости веществ, знать правила замещения в ряду активности металлов и галогенов. В этой статье излагаются только самые основные принципы как расставить коэффициенты в уравнениях реакций , как написать молекулярные уравнения , как определить состав химического соединения.

    Химия, как наука, чрезвычайно разнообразна и многогранна. В приведённой статье отражена лишь малая часть процессов, происходящих в реальном мире. Не рассмотрены типы , термохимические уравнения, электролиз, процессы органического синтеза и многое, многое другое. Но об этом в следующих статьях.

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Поговорим о том, как составить уравнение химической реакции. Именно этот вопрос в основном вызывает серьезные затруднения у школьников. Одни не могут понять алгоритм составления формул продуктов, другие неправильно расставляют коэффициенты в уравнении. Учитывая, что все количественные вычисления осуществляются именно по уравнениям, важно понять алгоритм действий. Попробуем выяснить, как составлять уравнения химических реакций.

    Составление формул по валентности

    Для того чтобы правильно записывать процессы, происходящие между различными веществами, нужно научиться записывать формулы. Бинарные соединения составляют с учетом валентностей каждого элемента. Например, у металлов главных подгрупп она соответствует номеру группы. При составлении конечной формулы между этими показателями определяется наименьшее кратное, затем расставляются индексы.

    Что такое уравнение

    Под ним понимают символьную запись, которая отображает взаимодействующие химические элементы, их количественные соотношения, а также те вещества, которые получаются в результате процесса. Одно из заданий, предлагаемых ученикам девятого класса на итоговой аттестации по химии, имеет следующую формулировку: «Составьте уравнения реакций, характеризующих химические свойства предложенного класса веществ». Для того чтобы справиться с поставленной задачей, ученики должны владеть алгоритмом действий.

    Алгоритм действий

    Например, нужно написать процесс горения кальция, пользуясь символами, коэффициентами, индексами. Поговорим о том, как составить уравнение химической реакции, воспользовавшись порядком действий. В левой части уравнения через "+" записываем знаками вещества, которые участвуют в данном взаимодействии. Так как горение происходит с участием кислорода воздуха, который относится к двухатомным молекулам, его формулу пишем О2.

    За знаком равенства формируем состав продукта реакции, используя правила расстановки валентности:

    2Ca + O2 = 2CaO.

    Продолжая разговор о том, как составить уравнение химической реакции, отметим необходимость использования закона постоянства состава, а также сохранения состава веществ. Они позволяют проводить процесс уравнивания, расставлять в уравнении недостающие коэффициенты. Данный процесс является одним из простейших примеров взаимодействий, происходящих в неорганической химии.

    Важные аспекты

    Для того чтобы понять, как составить уравнение химической реакции, отметим некоторые теоретические вопросы, касающиеся этой темы. Закон сохранения массы веществ, сформулированный М. В. Ломоносовым, объясняет возможность расстановки коэффициентов. Так как количество атомов каждого элемента до и после взаимодействия остается неизменным, можно проводить математические расчеты.

    При уравнивании левой и правой частей уравнения используют наименьшее общее кратное, аналогично тому, как составляется формула соединения с учетом валентностей каждого элемента.

    Окислительно-восстановительные взаимодействия

    После того как у школьников будет отработан алгоритм действий, они смогут составить уравнение реакций, характеризующих химические свойства простых веществ. Теперь можно переходить к разбору более сложных взаимодействий, например протекающих с изменением степеней окисления у элементов:

    Fe + CuSO4 = FeSO4 + Cu.

    Существуют определенные правила, согласно которым расставляют степени окисления в простых и сложных веществах. Например, у двухатомных молекул этот показатель равен нулю, в сложных соединениях сумма всех степеней окисления также должна быть равна нулю. При составлении электронного баланса определяют атомы или ионы, которые отдают электроны (восстановитель), принимают их (окислитель).

    Между этими показателями определяется наименьшее кратное, а также коэффициенты. Завершающим этапом разбора окислительно-восстановительного взаимодействия является расстановка коэффициентов в схеме.

    Ионные уравнения

    Одним из важных вопросов, который рассматривается в курсе школьной химии, является взаимодействие между растворами. Например, дано задание следующего содержания: «Составьте уравнение химической реакции ионного обмена между хлоридом бария и сульфатом натрия». Оно предполагает написание молекулярного, полного, сокращенного ионного уравнения. Для рассмотрения взаимодействия на ионном уровне необходимо по таблице растворимости указать ее для каждого исходного вещества, продукта реакции. Например:

    BaCl2 + Na2SO4 = 2NaCl + BaSO4

    Вещества, которые не растворяются на ионы, записывают в молекулярном виде. Реакция обмена ионами протекает полностью в трех случаях:

    • образование осадка;
    • выделение газа;
    • получение малодиссоциируемого вещества, например воды.

    При наличии у вещества стереохимического коэффициента он учитывается при написании полного ионного уравнения. После того как будет написано полное ионное уравнение, проводят сокращение тех ионов, которые не были связаны в растворе. Конечным итогом любого задания, предполагающего рассмотрение процесса, протекающего между растворами сложных веществ, будет запись сокращенной ионной реакции.

    Заключение

    Химические уравнения позволяют объяснять с помощью символов, индексов, коэффициентов те процессы, которые наблюдаются между веществами. В зависимости от того, какой именно протекает процесс, существуют определенные тонкости записи уравнения. Общий алгоритм составления реакций, рассмотренный выше, основывается на валентности, законе сохранения массы веществ, постоянстве состава.

    2024 litera-globus.ru. literaglobus - Образовательный портал.